LIRE DUE

SPEDIZIONE IN AEEONAMENTO POSTALE
 15 M ARZO
 1937 - XV
 Contrenta

 QUINDICINALE ILLUSTRATO

LA COP|A

LESA. Via Bergamo. 21•MILAN O-Tel. $54 \cdot 342-54 \cdot 343$

[^0]QUINDICINALE ILLUSTRATO
DEI RADIOFILI ITALIANI

Abbonamenti: Italia, Impero e Colonie, Annuo L. 30 - Semestrale L. 17. Per l'Estero, rispettivamente L. 50 e L. 30 - Direzione e Amm. Via Malpighi,

In questo mumero:

abbiamo letto
. pag. 146
IN TEMA D'AUTARCHIA ("l'an
tenna ») , , 147 CONSIGLi di RAD OMECCAN

CA (C. Favilla)
IL RADIORIPARATORE ecc.
(Spalvieri)
150

ONDE CORTE (S. Campus)
153
TELEVISIONE (A. Aprile) . .
CINEMA SONORO (M. Caligaris) 158
B. V. 139 (G. Coppa)

LA PAGINA DEL PRINCIPIANTE
(C. Belluso)

167
SONDAGGI SUGLI ALTOPAR.
LANTI (Aprile)
RASSEGNA STAMPA TEGNICA 173
CONFIDENZE AL RADIOFILO 175

In questi giorni, i quotidiani italiani so no stati portati da 20 a 30 centesimi, no stati portati da 20 a 30 centesimi,
i periodici illustrati da 30 a 40 . Il prov i periodici illustrati da 30 a 40 . 11 prov-
vedimento è dovuto ai notevoli aument di prezzo che si sono verificati sul mercato della carta e di altre materie prime. Per esempio, la carta su cui è stampata «l'antenna» è passata, nel giro di pochi
mesi, da 12 C a 240 lire il quintale. Esattamente il doppio. Nonostante la piena giustificazione che avremmo avuto d'au novi , in misura corrispondente ai venditz no d'imporre questo sacrificio ap nortur umici ed abbiamo preferito farlo soppo
tare al nostro bilancio.. I nostri fedel lettori apprezzeranno questa prova di di sinteresse e ce ne vorranno compensar
nel modo più efficace ed a noi più gra nel modo puù efficace ed a noi più gra
dito: facendo instancabile propaganda "l'antenna»", allargandone, nella cerchia degli amici, la conoscenza. toril

1 radioamatori inglesi si lagnano par- tive che il Regime ha dato per la più sana icolarmente dei programmi domenicali
che sono definiti poco adatti a scacciare che sono definiti poco adattia scacciare
la noia delle lunghe giornate invernall inglesi deliziate dalla pioggia e dalla ne ve. Nonostante questo, if radio-abbonati hanno raggiunto la cifra primato di
8.071 .464 perchè la B. B. C. li paga con scelti programmi serali stillati con perfetto senso artistico

> La sera "
alcuni teatri francesi si comincian a fare delle serie economie. Invece de
soliti tre squilli di campanello che annur ciano la prossima apertura c.el velario a direzione ha stabilito di farne soltanto $\xrightarrow{\text { uno. }}$ Perchè Perchè l'E.I.A.R. non economizza an-
che lei i fischi dil henissimo ridure dell tanto di guadagnato specia. E sarebbe tanto di guadagnato speciz nei riguard
della pazienza degli ascoltatoti «Travaso " massa di ascoltatori sarebbe meglio ac cetta una dissertazione col titolo: Cor. si piantano le zucche a un qualunque sin-
ghiozzamento che ha titolo, putacaso, La luna è triste stasera.

Ne L'amore di Ghetiza vi sono mo menti di bella e sobria drammaticità ch
rivelano una nobile ansia di liberazione e sono i momenti più vivi, e perció iù artistici -; peccato che il dramm non sempre sia stato contenuto, e ta
volta trasmodi nell'accessorio. E poi, recitazione... Ma come non accorgersi che quel padre - che nel dramma dovrebb sere personaggio gigantesco, forse il p
mportante - era talmente falso da far rabbia alle pietre?

Per interpretare il ruolo di corr:dore lista nella commedia di Geo Charles nia della stazione Parigi P.T.T. ha scrit turato nientemeno che Antonino Magne cco una idea: se si facessero recitare cilisti e correre gli attori probabi'mente

```
Una segnalazion
importante per ch
```

ama le audizion
perfe te

GLI APPARECCHI
II M C A
DI ALESSANDRIA

RICORDI \& FINZI
 Via Del Litorio, 1 bis - Milano

i risolverebbero in una volta sola i pro. blemi del teatro e quelli dello sport
clistico. Provamoci; non si sa mai... «La stampa ".

.. e cíhenno actilla

Avevo il timore di aver capito male una prima volta, ma mi sono dovuto convincere che nell'annuncio in lingua francese di uno di quei programmi gen-
tilmente offerti si è proprio pronunciatilmente offerti si è proprio pronuncia-
to cosi: Mezzo sopranó Ebe Stignani.
Non si preoccupi, è proprio così, e cosa vuol farci?
Probabilmente lo fanno per vezzo!

Avete udito che perfezione di colle. gamenti hanno all'Eiar? Tutto avviene nel più modi; non passa giorno che non si decapiti qualcosa: un inizio di program. ma, il segnale orario, un titolo.
Con una disinvoltura ideale!
...Sabato 6 u. *** ad esempio, hanno parole d^{\prime} inizio della parole d inizio delia commemorazione
furono saltate (a Milano si udi solo un: parte prima); il conferenziere (?) trovò
it modo di mangiarsi un buon terzo del. 1 modo di mangiarsi un buon terzo del.
a sua concionel E se non sapeva parla sua concionel E se non sapeva par-
lare al microfono, perchè ce l'hanno mandato?
Cara Antenna, ...e tu puoi dirci quanCara Antenna, ...e tu puoi dirci quall
do terminerà quell'esempio di scenienze cacofoniche che vanno sotto il nome d cacofoniche che celebre romanzo?
Egregio lettore, abbiamo capito; non $c^{\prime} e$
bisogno di farne il bisogno di farne il nome, ma non sap
piamo proprio dirle nulla sulla sua du pramo poprio dite nula sulla sua du
rata... per intanto non c'è che chiuder l'apparecchio e pensare alla salute.

Collaloorate a "Antenna,
Esprimeteci le vostre idee Divulgate la vostra rivista

J. BOSSI

Le valvole termoioniche
L. 12,50
C. FAVILLA

La messa a punto del radioricevitorl

N. CALLEGARI

ONDE CORTE B ULTRACORTE
Soc. An. RO. IL ROSTRO MILANO - Via Malpighi, 12

In tema d'autarchia

il comunicato diramato a conclusione della prima seduta del Gran Consiglio, è un atto politico di tale complessa ampiezza, che non può interessare soltanto la stampa quotidiana. L'appello, in esso contenuto, alla scienza ed alla tecnica italiana, perchè moltiplichino i loro sforzi ed accorcino i tempi della conquista dell autarchia economica del Paese. an che ai fini della nostra preparazione militare, riguarda da vicino il campo radio elettrico.
Guglielmo Marconi, genio solare di quel ramo dell'elettricità che chiameremo eletta, nella sua qualità di Presidente del Consiglio Nazionale delle Ricerche, ha risposto all'appello, mettendo a servizio della patria fascista la competenza e la volontà di quella legione d'inventori, sperimentatori ed organizzatori, $d i$ cui egli è capo, e che costituisce il fiore dell'intelligenza scientifica e tecnica della $N a$ zione.

Siccome la Nazione è moralmente mobilitata per la difesa della sua esistenza, l'avvenire delle sue giovani generazioni e l'intangibilità dell'Impero, ciascuno deve considerarsi impegnato nella grande battaglia per dare all' I talia il massimo della indipendenza economica ed il massimo della sicurezza. Battaglia in cui (son parole del comunicato) le esigenze civili dovranno essere subordinate, e, se occorra, sacrificate ai supremi interessi dello Stato.
Come non pensare alle valvole termoioniche? Si è ritenuto necessasio prorogare di cinque anni l'attività del Commissario per le fabbricazioni di guerra. Ed è giusto. Seguendo il medesimo principio di massima, non dovrà certo apparire superfluo adottare, fin da
ora, provvedimenti precauzionali di valida protezione ad un'industria, la quale, duta la importanza assunta dai servizi elettrici nella guerra moderna, può esser valutata come elemento fondamento dei compiti difensivi ed offensivi delle forze armate. In una seria preparazione bellica, nulla può essere abbandonato al capriccio del caso ed all'alea dell'imprevisto. Non facciamo troppo assegnamento sulla peculiare facoltà italiana dell'improvvisazione.

Perchè, armi e munizioni non s'improvvisano; e nemmeno l'allenamento della truppa e l'efficienza professionale degli ufficiali. A maggior ragione dobbiamo pensare alla vita di quelle industrie, le quali, per complesse e delicate difficoltà tecniche, non possono attivarsi da un giorno all'altro, nè di momento in momento esser chiamate a fronteggiare il determinarsi d'un improvviso più elevato fab. bisogno di produzione.

E' precisamente il caso dell'industria nazionale delle valvole. Uomini di coraggio e d'iniziativa l'hanno creata, e, senza badare alle difficoltà ed ai sacrifici dell'avviamento, l'hanno potenziata e condotta ad un grado di perfezione tecnica, che i suoi prodotti non hanno oramai da temere il confronto coi similari d'origine straniera. Essa (come accennammo nella nota precedente) ha consentito all ltalia di superare la dura prova delle sanzioni anche nel campo radiofonico. Questa reale benemerenza non sarà mai ricordata abbastanza.
Un vitale interesse del Paese esige che questa industria possa continuare, in piena tranquillità, il proprio lavoro. Per ragioni di au-
tarchia economica e per impellenti esigenze di carattere militare. Se una malintesa tolleranza del prodotto straniero dovesse forzatamente mortificare la capacità produttiva dell'industria nazionale delle valvole, ciò si ripercuoterebbe immancabilmente e pericolosamente sull'attrezzatura della nostra difesa. Ed avrebbe, altresì, deplorevoli ripercussioni di vario genere, e che non dovremmo dimenticare o trascurare. E^{\prime} difficile addestrare maestranze specializzate; e quando un'industria le ha formate, bisogna che abbia il modo di conservarle. Se per riduzione di produzione, essa fosse costretta a lasciarle disperdere, il danno che ne deriverebbe, poi, quando si determinasse di nuovo la necessità di riassumerle, è patente; sarebbe impossibile che le ritrovasse nella forza numerica di prima; in ogni caso le ritroverebbe minorate nella pratica e disciplina dello speciale lavoro. Nè parliamo di altri motivi d'ordine sociale, familiare e demografico, da tenere nella debita evidenza, ma sui quali preferiamo non dilungarci, poichè sono di per sè intuitivi.
Fu lamentato, in tempo di sanzioni, un difetto quantitativo di produzione, dovuto ad eccezionali contingenze ed a cause di forza maggiore, da noi già lumeggiate ampiamente. Adesso, anche codesto difetto è stato rimediato ad abundantiam. Non solo si è provveduto al fabbisogno del mercato; ma si è continuato a costruire oltre la richiesta, per tenere in moto gli impianti ed assicurar lavoro continuativo ad una maestranza, la cui consistenza numerica tende al migliaio. Questi ottimi lavoratori fascisti non possono esser privati del loro pane; come sarebbe, staremmo per dir criminoso, sottrarre alla piena efficienza della sicurezza militare italiana, la funzione integrale d'un così importante complesso tecnico. Intanto, le scorte crescono e s'accumulano. Non andiamo certamente errati affermando che nei soli magazzini della «Fivre» le giacenze superano le 400.000 valvole, ed alla fine del corrente mese raggiungeranno sicuramente il rente mese ra
mezzo milione.

I dirigenti dell'azienda, con squisita sensibilità d'italiani e di fascisti, si considerano mobilitati, insieme alle loro maestranze ed ai loro impianti di produzione, per rispondere, in qualunque momento, all'appello della Patria. Però, la loro buona volontà potrebbe creare uno stato di disagio alla fabbrica, qua-
lora non si escogitassero coraggiosi provvedimenti per garantire un maggior potere d'assorbimento del mercato. Sarebbe doloroso che il loro zelo d'industriali dovesse esser punito da una contrazione dello smercio. Puniti, per aver voluto rendere del tutto indipendente l'Italia dall' importazione straniera di valvole; un colmo d'assurdità.
Si tratta d'una situazione delicata che deve essere affrontata con decisione. Produrre più della richiesta è un atto d'ardimento industriale, ma non può essere la normalità. E che avverrebbe se la fabbrica, per non accrescere all'infinito le scorte, dovesse commisurare la produzione alla possibilità attuale di smercio, e, conseguentemente, dovesse metter sul lastrico una parte della maestranza?

Il Governo, a cui la situazione è nota, certamente prenderà i provvedimenti che riterrà opportuni, secondo le direttive autarchiche e di difesa militare annunziate. Ma non è male ricordare a quei fabbricanti italiani d'apparecchi radiofonici, che usano ancora valvole straniere, senza che ciò sia, oggi, giustificabile in nessun modo, che ad essi incombe l'obbligo di adottare le valvole italiane. E^{\prime} un invito che noi rivolgiamo loro da Italiani a Italiani, nella forma più cordiale. Nessun impedimento tecnico sussiste, perchè non possa essere accolto; le nostre valvole, come è generalmente riconosciuto, non lasciano più nulla da desiderare, come qualità, durata, rendimento e convenienza economica. D'altra parte, quei nosiri amici dovrebbero tener presente che di sopra alle ragioni pratiche, vi sono quelle morali; per precisare; il dovere della solidarietà nazionale ed industriale. Non bisogna, per nessun motivo, che il nostro oro vada ad impinguare i fabbricanti stranieri, e che ciò sia causa di disoccupazione fra le nostre masse lavoratrici.
Vi sono, poi, alcuni detrattori, per partito preso ed esteroflia congenita (pochissimi, per fortuna) i quali amano darsi arie snobistiche di pessimo gusto, ed osteggiano e svalutano sistematicamente la produzione nazionale delle valvole. A codesti incauti disfattisti dell'auvalvole. A codesti incauti disfattisti dell au-
tarchia economica ed industriale del Paese, dobbiamo ricordare che in Italia esiste, per fortuna, un istituto di polizia, creato apposta per far metter giudizio a chi non l'abbia o non voglia averlo per deliberato proposito. Si chiama confino.

61'antenna,

Consigli
di Radiomeccanica

Ill collaudo deif ricevitorif

Il primo controllo da effettuarsi su n apparecchio in prova è la misura delle tensioni di regime, le quali sono in re Se l'apparecchio è a corrente continua, dopo aver provato gli isolamenti e le coninuità con un ohmetro, ed esserci as sicurati che le tensioni sono quelle douute, si potrà effettuare il collegament dalle baterie oppure alla rete a C. C. ta, occorre prima di tutto accertarsi ch a tensione di rete sia guella corrispon dente al principio del trosforma:ore d alimentazione. Differcnze in più o meno del 5 e financo del 10% possono in qualche caso tollerarsi ; ma per una prova differenze superiori al 2%
Sicuri che le tensioni sian
Siti stabiliti, si può passare entro i li-
controlli da eseguirsi sia con strumenti
di misura, sia ad orecchio.
Il collaudo di un radioricevitore, o di un amplificatore, avviene per cosi dire
ritroso. itroso.
La prima cosa di cui ci si accerta è la cadute di tensione, ovvero energia dispo nibile con pieno segnale); 1 a seconda co sa che si controlla è la regolarità dello stadio finale di amplificazione, e così via no a giungere al rrimo stadio oc.rcuit stadio finale di amplicazione, e così via scillatore si eseguizce a ritroso, inizianprecede la rivelatrice.
Se si tratta di un ricevitore
odina montato con trasformatori a fre quenza intemedia già tarati, l'all ñ a amento si potrà iniziare anche dai primi stad cioè collegando l'oscillatore tra massa grigia pilota della convertitrice, mag
te prime misure che si eseguiscon
i un apparecchio radioricevente o am plificatore sono le seguenti:

1) misura della tensione al filamento
d_{i} tutte le valvole (con voltmetro a fer o mobile);
2) misura della tensione tra il fila
nto della raddrizzatrice dalimenta ento della raddrizzatrice d'aliment
di Cario Favilia tensione del trasformatore di alimentazione (-) (con voltmetro a C C (ohm per volta)
va) misura della tensione dopo fiitro rice).
3) misura della tensione tra la placca della o delle valvole finali e il rispettivo catodo o centro filamento;
4) misura della tensione tra il sud-
detto catodo o centro filamento e il ri-
torno delle griglie pilota (massa, o centro secondario alta tensione di alimenta-
zione); cioè misura della tensione di polarizzazione;
5) misura della tensione tra l'evenuale griglia schermo della valvola fina le e il rispettivo catodo o centro filamento;
tutte le altre vallvole;艮 altre valvole;
6) misura della tensione delle evenuali griglie scrermo delle altre valvole; 9) misura della tensione di. polariz. zazione di tutte le altre valvole (equiva
lente alla tensione tra catodo e massa nel caso di autopolarizzazione).
Tutte queste misure possono essere fat. te con una sufficiente approssimazione solo servendoci di un voltmetro ad almeno 1000 Ohm per volta, nel caso in cui la corrente di misura attraversi circuiti con resistenza propria relativamente bas-
sa. In tutti gli altri casi (stadi a reis za. In tuttig gi altri casiéta, circuili alimentatia attraverso celle filtranti di un certo valore resistivo) è necessario usare volmeiri con resistenza propria molto elevata (10.000 Ohm per Volta).
In ogni cas 0 è indispensabile calcolare detentuale caduta di tensione che può determinare errori di leturar.
taverso una resistenza anodica di x Ohm, con un v'otmetro a x Ohim per volta, dà un valore che si trova a $1 / \mathrm{x}$ della scala dello stramento, vuol dire che il valore trovato non è quello effettivo con-
seguente alla caduta di tensione provo. seguente
cata dalla corrente anodica della valvola
in esame, ma è quello conseguente alla dala provocata dalla corrente anodica sommate insieme.
Se ad esempio la tensione misurata a monte di una resistenza di placca del valore di 200.000 Ohm, è di 250 Volta, e la tensione misurata alla placca è di 100 Volta, si ha che la caduta di tensio ne, e che la caduta di tensione prodotta, come abbiam detto, dalle cor renti della valvola e dello strumento sommate insieme. Ammettiamo che la indicazione dei 100 Vota avvenga a $1 / 5$ della seala dello strumento a bobina mo
bile: il consumo bile: il consumo proprio di esso sar
quindi in questo caso li $1 / 5$ quello a fon do scala. Se si tratta di un volmetro 1 mA . fondo scala, il consumo proprio per tale lettura sara di $1 / 5=0,2 \mathrm{~mA}$ La caduta prodotta da questa corrente in una resistenza di 200.000 Ohm è d $200.000 \times 0.0002=40$ Volta. La ca duta prodota dala corrente della valvo di 110 Volta ai capi della stessa resi stenza.

Considera:o questo, ola tensione effet tiva tra placea e catodo sarebbe di 140 Volta.
In realtà, però, il valore è ancora verso. Quel.' trovato, infat i, si riferi sce ad unatensione anodica di 100 Vol
ta. Con una tensione anodica superiore ta. Con una tensione anodica super.ore
il consumo della valvola aumenta e la caduta minima stabilita dal solo consumo della valvola è sureriore ai 110 Volta dianzi calcolati.
Questi semplici calcoli hanno una portata pratica relativa, ma servono a schia rire le idee e ad eviare equivoci
Quando si eseguisce il controllo delle
tensioni di un apparecchio è necessario tensioni di un apparecchio è necessario avere sottocchio daile valvole usate.
Veramente un primo controllo an drebbe fatto circa le tensioni di tutti i secondarii del trasformatore di alimentazione; ma s'intende che questo controllo sia stato fatto prima del montag gio dello stesso trasformatore.
Se le tensioni continue di regime risul viste il fato potrebbe imputarsi

I Supplemento de l'antemna: Tecnica di Laboratorio - è il regalo che la Rivista offre ai suoi abbonati

Ai non abbonati, verrà spedito dietro l'invio di centesimi 60 (anche in francobolli).

1) valvola raddrizzatrice difettosa;
2) assorbimento eccessivo e anorma le dell'apparecchio; 3) errato valor
enza livellatrice;
3) errato valore della tenitione di re te, rispetto al pr
d'alimentagione.
Un'altra misura assai importante, spe cialmente se si tratta di un apparecchio facente uso di valvole di grande poienza, è quella della corrente anodica, sia
tutte le valvole che di ogni singola.

La corrente assirbita, però, può essere adute agevolmente calcolata in base ale di valore conosciulo
La corrente a ogni valvola può essere conosciuta dividendo la tensione mistrrata ai capi della resistenza catodica, per 1 valore della stessa resistenza. Ammesso di avere una vaivola con una resistenza catodica di 1000 Ohm e con Volta, la la resistenza catodica, ch'è Ja corren'e a-
nodica della valvola in esame, è di 10 : $1000=0,01$, cioè di 10 mA . Così, se ai capi di un partitore di ten sione avente una resistenza resultante di
10.000 Ohm si ha una tensione di $20{ }^{\prime \prime}$ 10.000 Ohm si ha una tensione di
Volta, la corrente da esso consumata ; oolta, la corrente da esso consumata '
di $200: 10.000=0.02$ Ampère, cioè di 20 mA.
Altre prove molto interessanti sono nisura del rumore di fondo (hum di fen do, e dell'efficienza delle impeflenze li. vellatrici.
Di ques
Di queste prove ne parleremo prossi mimente.

Ill radio riparatore

ealliliprovavalvole

di G. SPAMLVIEREI

11 provavalvole è uno dei pochi stru. menti dai quali il radioriparatore non do orà mai separarsi; sul lavoro è il suo più importante aiuto; infatti se e vero che ogni difetto in un apparecchio radiori-
cevente può essere localizato anche con mezzi di fortuna, aitrettunto non si può dire se il guasto è dovuto ad una valvola: solamente con il provavaluole si potrà definire se essa è guasta o esaurita, a meno di avere la possibilità di sostituire o gni valvola dell'apparecchio (o solamente quelle supposte difett
sicuramente efficienti
La magaior
terminano il mancato funzionamento d d in radioricevitore risiede nelle valvola, ben pochi sono i casi in cui il ricevitore cessa di funzionare per avarie avvenute in qualcuno dei suoi elementi, mentre in. vece, nonostante i collaudi accurati ai quali il fabbricante sottopone le sue val. rimento, corlocircuito tra gli elettrodi, produzione di gas nell'interno del bulbo, etc.
Prima di dare qualche cenno sui prin
cipali tipi di provavalvole esistenti in comnmercio, faremo alcune considerruzion. di carattere generale, riguadanti soprragire presso il possessore $d i$ in apparec. chio, che è stato costretto a richiedere il :uo intervento.
Anzitutto quanto più preciso ed evidente è il controllo delle valvole, tunto migliore impressione ne strà riportatu, con gli ovvi vantaggi che derivano. Infattia parte il senso di pratica e convin. cente ricurezza che deve emanare dal la. voro che si sta eseguendo, e che vienc
senz'altro sentito dal cliente questi senz altro sentito dal cliente, quest ricorrere di nuovo al medesimo riparalore
Questo poi deve cercare di esercitare una azione sopratuto convincente sul suo cliente. Ognuno, di solito, giudica sommariamente il proprio ricevitore con una
prova di ascolto sulla stazione local" o vicina. In queste condizioni, al riparatore che ha provato le valvole e non le ha trovate in buono stato, dopo un controllo di quel genere, può sorgere il
dubbio o sul controlo da lui eseguil o sull efficienza del suo strumento. 1 dubbio non ha ragione di esistere; lee
condizioni di minor efficienza delle condvole non possono essere determinate in base ad una prova troppo sommaria, ma solo con lo strumento o con il confronto per sostituzione.
E^{\prime} per convincere il cliente, ogni riparatore ha a sua disposizione il provavaivole che indichera in maniera inequivo-
cabile, anche al piü profano, lo stato di cabni valvola; e per di più, avendo disposizione una valvola nuova per t sostituzione, potrà eseguire subito un «razionale confronto \#. Individuat $l_{a} l_{a}$ valvola che si trova al limite del rendi mento, si sostituisca con una nuova e si ascolti l'missione di una stazione debole e lontana; poi si rimetta in funzione l_{1} zione non sarà più udita. Il risultato diniostra che delle due valuole, la se conda non fornisce l'amplificazione ne cessaria per il buon funzionamento del. l'apparecchio. Un altro confronto può es sere eseguito in base alla riproduzion della stazione locale: la chaurezza dei ton riprodotti dalla valvola nuova prova in modo convincente la non completa ef
cienza dell'altra che funzionn generand cienza dell'alrat
distorsione.

> Il cliente a egli cerissioni della stazione locale; i a sentamente non potrà assoggettar si a sentire interrotta una ricezione fa

Il più assortito negozio di vendita di parti staccate e pezzi di ricambio della Capitale
RADIO ARGENTINA

IN PREPARAZIONE IL NUOVO CATALOGO 193_{7}
R O M A
Via Torre Argentina, 47
Telefono 55-589

Abstract

vorita a causa di quella valvola che qual. che giorno primn, secondo il suo giudi zio, era buona, e che invece lo strumento del riparatore aveva nettamente classificata essurita. Ogni buon riparatore deve quindi convincersi che è necessario formarsi una coscienza particolare per il proprio lavo- ro; ioltre egli deve attrezzarsi. Sarà bene che abbia a portata di mano una discreta ssere eseguita secondo due princip pontonza. Conrollo dell'emissione: Tutti gli lettrodi meno il filamento e il catodo : no collegati insiemie, e tra essi e il odo (o il filamento se l'accensione av viene direttamente) viene applicata un d. d. p. Se il ca odo \dot{e} in buone dizione, la correnie erogata determin

 serie di valvole buone che gli permetteranno di eseguire il lavoro con estrema rapidità. Quando il possessore di un ricevitore difettoso chiama il riparatore, eg vesidera rimettere in funzione l'appirec. chio al più presto possibile: quanto più rapido sarà il lavoro del riparatore, tan10. più sarà apprezzata la sua opera.

Vediamo di dare ora uno sguardo alle caratteristiche più salienti dei provava!
vole che si trovano sul mercato nazio nale ed estero.
Tutti gli strumenti provavalvole funzio nano a corrente alternata ed hanno un numero vario di zoccoli che permett: n_{0}
il controllo di tutit itipi di valvole usat il controllo di tulti i tipi di valvole u:at dicatore il cui quadrante è diviso in tre zone contrassegnate buona, mediocre, cıl tiva e diversamente coorace. Questo fatto allo scopo di rendere evidente chiunque il risultato del controllo. Ogni provavalvole è poi attrezzato in modo
da poter eseguire sulle valvole, altri conda poter eseguire sulle valvole, altri con
trolli oltre quello dell'emissione; e cioe prova di cortocircuito, prova di isola mento del catodo, prova del vuoto
la prova di efficienza in generaie puè

l'indicazione buona. Questi strumenti sono di uso molto semplice e comporano solamente tre regolazioni: tensione alimentazione, tensione di gilamento, nione anodica. Poiche costrutiva nenie sono semplicissimi,
non è elevato (v. fig. 1)
l'emissione si è dimostrata molto codr sfacente ed il metodo è superato it esattezza dagli strumenti più perfezio nati del secondo sistema, i quali rial
tano molto costosi e di manovra non troppo semplice.
Controllo della pendenza: Con questi di corrente anodica provoca'a da una va di corrente anodica provocata da una va-
riazione della tensione applicata all'eletrrodo di controllo (griglia): la misura di questa variazione dà un indice della bontà della valvola in esame. La prova può essehe statica e dinamica. Sta-
ica quando la tensione di griglia im. piegata è continua, e dinamica quando è alternata. Per i due tipi i circuiti fondamentali sono quelli di fig. 2. Nel tipo che permette il controllo della pendenza statica l'alimentazione può essere
fatta anche a corrente al ernata, poichè in questo caso è la stessa valvola in esame che compie la funzione di raddrizzatrice. Come si vede dalla figura la prova della pendenza dinamica viene eseguita variando la tensione alternata applicata alla griglia: la corrente misu-
rata dallo strumento è cuella raddrizzarata dallo strumento er quet
ta dalla valvola in prova.
In tutti gli strumenti ora esaminati, poichè la corrente indicatrice della bontà della valvola deve essere sempre la stessa per qualsiasi tipo di valvola, sono previste due regolazioni: una per la ten sione anodica e
di alimentazione. di alimentazione
Inotre è previsto un regolatore della tensione d_{i} alimentazione, che in genere
e
costituito da un reostato inserito sul primario del trasformatore di alimentazione.
controllo dell'emissione o dell'am

LETTORI,
Se questa rivista vi piace, se trovate be è fatia in modo da rispondere in piens
vostri desideri ed alle vostre oceorrenze ai costri disideri ed alle vostre occorrenze, non mancate di. mostrarla ai vostri ricompensa che premierà le mostre fuliche

Se non vi piace, se non risponde ai vostri criteri, scriveteci, indicandoci 1 a noi di sprone a far sempre neglio
La critica onesta e spassionata è sempre utile. E' una forma di collaborazione
che dà imnuancabilmente is suoi frutti.
Alhbonarsi vuol dire dimostrare la propria simpatia
24 numeri, con i fascicoli di supplemento Lire B⿴囗 -

Rimettete vaglia alla Soc. An. Aditrice \bullet II Rostro, Via Malpighi, 12 - Milano, fate ill vostro versamento

Eicordare: chi acquista i numeri separatamente, viene a spendere in capo all'anno Lire 4.- e non riceve il supplemento. una delle sue possibilità di funzionamento; ma altri difelti, oltre quel a
l'esaurimento catodico, possono avveni re alle valvole.
Isolamento del catodo: Questo dontrollo si effettua solamente per le val-
vole a riscaldamento indiretto. Molte vole a riscaldamento indiretto. Nolt
volte la valvola funziona in circuiti tali che tra il catodo ed il filamento si trova applicata una d. d. p. piuttosto alta
L'isolamento tra i due eletrodi deve L'isolamento tra i due elettrodi deve quindi essere perfetto e per controllar-
lo, in ogni provavalvole, è disposto un lo, ir ogni provavalvole, e e disposto un
interruttore K, comè è indicato in fig. 1: ad interruttore chiuso la corrente può circolare e lo strumento da indicazioni normali, mentre aprendo l'interrutiore la corrente circola solo nel caso di isolamento impefetto tra catodo e filamento.
Si noti che questa prova viene eseguita con la valvola funzionante e non equivale quindi ad una misura di resistenza tra $\mathrm{gli}_{\mathrm{i}}$ elettrodi della valvola fredda Vuoto insufficiente: Molto rari sono i
casi in cui una valvola si presenti difet. casi in cui una valvola si presenti difet-
tosa per la presenza di gas nell'interno tosa per la presenza di gas nellade io
del bulbo. Dopo i severi collaudi imposti dal fabbricante non è errato pen-

Non è concepibile una ot.
tima preparazione alla ratima preparazione alla ra
diotecnica, senza conoscere a fondo e e perfettamente, le caratteristiche degli organi
vitali che compongono un vitali che compongono un
radioricevitore. Come ognuno Come ognuno sa, la resi.
stenza ohmica costituisce
un elemento di un elemento di porimissima
importanza nei moderni importanza
complessi.

Nel radiobreviario

Le Resistenze Ohmiche IN RADIOTBCNICA dIA. APRILE che uscirà in questi giorni, esauriente: dalle arg prime no no.
eimi elementari, zioni elementari, si siunge,
attraverso una piana e chialattraverso una piana e chia
ra tratazione, ad un com pleto esame di tutte le
materie. materie.
Definizioni, grafici, leggi
basilari, spiegazioni e sug. Definizioni, grafci, leggi
bassilari, spiegazioni e sug.
serimenti, vi sono inseriti gerimenti, vi sono inseriti
con precisiune e e larghezza.

Prezzo L. 8
Richiederlo alla S. A. Il Rostro - Mi-
lano - Via Malpighi, 12, a mezzo cartolina vaglia o servendosi del ns. C.C. postale n. 225438.
Sconto 10% agli abbonati alla Rivista
[
sare che un simile caso sia impossibile constatarlo. Ad ogni buon conto molti provavalvole hanno la possibilità di eseguire il controllo del vuoto. Come è noto la presenza del gas viene rivelabi.
dalla sua ionizzazione appena si stabi. lisce la corrente eletironica. Jonizzazione che dà luogo a corrente di griglia: se nel circuito di quest'ultima si inserisce una resistenza elevata, c. d. t. ai suoi e
stremi, provoca una variazione della stremi, provoca una variazione della cor.

rente anodica, cioè dell'indicazione del lo strumento.
Cortocircuiti
Cortocircuiti interni: Anche questo eifetto e di una rarità estrema: ma non e il caso di trascurarlo poichè non pro
duce solamente il mancato funziona mento della valvola, ma può avariare alrre partio del circuito in cui la valvola unziona.
Il controllo del cortocircuito tra gli elettrodi deve essere eseguito prima di
ogni altro per evitare che con le altre prove lo strumento, se non è protetto adeguatamente, possa essere danneggiato.
In genere gli strumenti del secondo lipo, cioè quelli che controllano la pen denza, danno direttamente l'indicazione del cortocircuito con la segnalazione generica di amplificazione anormale.
strumenti dell'altro tipo dispongono di elementi adatti per una prova separata. Questa consiste nell'applicazione di una d. d. p. tra i vari elementi della val. vola e di un indicatore di cortocircuito, che può essere una piccola lampada a nata) oppure lo stesso in indicatore de provavalvole (se la d. d. p. è continua) Controllo delle raddrizzatrici: Le val vole raddrizzatrici vengono controllate solamente col metodo di emissione ed an commutatore permette di effettua a prova anche per le biplacea. senziali caratteristiche, dei provavalvole oggi esistenti in commercio. Il mercato estero, oltre i tipi più correnti ed eco nomici, può fornire provavalvole lussuo si e veramente completi, con i qualie è possibile eseguire, oltre la prova di effi-
cienza delle valvole anche tutte le cienza delle valvole, anche tutte le allt
cioè permettono la misura di tensione e
di corrente, sia alternata, sia continua,
di resistenza, di isolamento, di capadi resistenza, di isolamento, di capacità ecc., ecc.
Alcuni' invec

Alcuni invece eseguiscono un con-
trollo accuratissimo delle valvole: la val. trollo accuratissimo delle valvole: la val.
vola da esaminare viene alimentata intevola da esaminare viene alimentata inte
gralmente con energia raddrizzata da un alimentatore interno, e nella misura prescritta dal costruttore. All'ingresso viene applicata una f. c. m. alternata di BF

e viene misurata la tensione all'uscita. Cioè si eseguisce una vera e propria mi sura di amplificazione. Per le valvole de-
gli stadi di uscita, per le quali l'ampligli stadi di uscita, per le quali l'ampli-
ficazione ha poco importanza di fronte alla potenza che essere possono fornire, viene misurata l'emissione catodica. Come è noto, l'emissione ha poca influenza sul. l'amplificazione, mentre invece da essa
dipende la potenza fornita dalla valvola. dipende la potenza fornita dalla valvola. Con questo strumento ogni valvola viene
controllata per la funzione che essa è controllata per la funzione che essa \grave{e} en
chiamata ad esercitare
nell'apparechio. Per le raddrizzatrici è previsto un controllo separato.
La prova dei cortocircuiti viene ese-
guita applicando tra gli eletrodi della guita applicando tra gli elettrodi della ne alternata: il cortocircuito viene rive. ne alternata: il cortocircuito viene rive
lato da una piccola lampada al neon. Un provavalvole di questo genere è utile ma non necessario. Per il lavoro che deve eseguire il riparatore è sufficiente un semplice strumento col quale si poscortocircuiti e Tisolamento del catodo.
Uno strumento che permetta tali controlli, è il più economico dei provavalvole, pur permettendo una selezione rapida e com pleta; è di peso leggerissimo e quindi facilmente trasportabile, ed è di manovra semplicissima.

1 dovere di ogni buon radiofilo abbonarsi a
"I’antenna,

alimentazione vengono assolutamente scartati quando la potenza del trasme ti
tore sale a cifre alte. Infatti per raggiun tore sale a cifre alte. Infatti per raggiun-
gere, per esempio, i 100 Watt d'antenna non sarà il caso di usare corrente di origine chimica.
Viene molto usato, per trasmettitori d grande potenza, il «convertitore» » i
«survoltore». Il primo viene «survoltore». It primo viene anche chia
mato «gruppo convertitore-dinamo »,

perchè costituito da un motore a cor
perchè costituito da un motore a cor
renterente alternata, il cui asse è calct tato a quello di una dinamo a corrente continua che produce la corrente e la tensione necessaria. Segue un complesso filtrante di impedenze e condensatori che livellano opportunamente la corrente pul
sante. Di solito la dinamo é fornita di sante. Di solito la dinamo è fornita di un reostato di avviamento per regolare lec
citazione di campo e per tenere quindi la tensione, dietro controllo di un volme

tre, sul punto di esercizio. Anzi il ccn trollo sarà bene sia scrupoloso. Molto
spesso la dinamo può essere un alternaspesso la dinamo può essere un atterna
tore a 500 periodi, in modo che può es. sere usata benissimo, dopo che la cor-

LE VALVOLE TIRRMOIONICHIE di JAGO BOSSI
II libro che non deve mancare a nessun radiofilo - L. 12,50
rente è filtrata, per trasmettere in grafia, reddrizzata in fonia. Il survoltore vie gente di corrente continua. Esso è co stituito da un motore a corrente continua unito ad un alternatore della frequenza voluta Si rende molto utile nelle navi o in ogni caso ove la produzione di corrente sia autonoma. In tal caso esiste una
batteria di accumulatori che fa azionare il motore a corrente continua, che a sua volta fa funzionare l'alternatore, che può produrre tensioni altissime in relazione alla potenza del motore. Questo sistena puantunque costoso nell'impianto e nella anutenzione, petra riastere mole cuando la rete non fornisce he corrente continua che di solito non ta una tensione molto elevata e in ogni caso, inservibile per la diretta alimentazione di un trasmettitore di media po

enza. Questo modo di alimentazione va ottimamente per le onde medie e lunghe,
ma in 0.C. ne è necessario uno scrupoloso uso. Infatti si potranno verificare abbassamenti o innalzamenti di tensione anto per la corrente di alimentazione uanto per la produzione della corren irettamente immessa nel trasmettitore anto le tensioni prodotte e l'eccitazio ne di campo, si possono egualmente ot tenere delle buoue trasmissioni anche in tenere
fonia.
Un a
Un altro punto in cui è necessario insistere è il filtraggio della corrente cl deve essere ottimo sotio ogni riguardo
Se nella normale ricezione delle onde medie si usa una sola cellula filtrante ella trasmissione delle onde corte se ne dovranno usare due con alte capacità e buone impedenze. Quando le tensioni
non superano i 500 volta si possono usanon superano i 500 volta si possono usa-
re i condensatori elettrolitici che raggiunzono capacità alte e senza che il costo sia elevato. Tralascio di parlare di altri
er trasmiscione che elettrolitiche poiche per trasmissione non presentano speciale interesse. Prima di passare alla descrizio
ue dell'alimentazione con corrente alter nata raddrizzata, bisogna premettere che vantaggi e il solo svantaggio della insta ilità, sempre diminuibile, pure come mentazione ideale resta quella ottenut per mezzo di batterie. Tutti quelli che si curano di radio sanno ormai quale sia il rincipio su cui si basano i tubi raddrizsolito sono di mercurio. Fu Edison che er primo constatà il bombardamento eettronico da un filamento incandescente, per primo costruì il diodo. Per piccole potenze da raddrizzare viene usata la bipacca; mentre quando il calore da dissicostruiscono le monoplacche che con itubi a vapore di mercurio sono adatte per potenze elevate. Ora vengono usate normalmente valvole raddrizzatrici per alimentare anche i grandi trasmettitori, quantunque la corrente iniziale possa estema è il più pratico e non ha bisogno di alcuna sorveglianza, ammenocchè non si voglia tenere, e ciò sarebbe molto bene, un continuo controllo della tensione on un volmetro e un reostato, e ciò per continl da in
pilota controllato a quarzo.
Nella fig. 82 viene illustrato un raddrizzatore termoionico per le due semiIl diodo viene montato in doppio onde sfruttare ambe le semionde ed ottenere elevate potenze (fig. 83). La corrente pulsante cosi ottenuta viene poi livellata con filtri che è meglio siano a cellula doppia (fig. 84). Per economia quando anodica, il dilettante potrebbe ricorrere al sistema della fig. 85. Sono due comuni raddrizzatori posti in serie che possono dare complessivamente una elevata tensione. Usando per esempio due 83 si rie-
sce ad ottenere anche 1200 polta sce ad ottenere anche 1200 volta. I trasformatori sono separati ma potranno co-
stituire anche un corpo unico, però in commercio sono rinvenibili separati. La tabella VI dà i dati valyole raddriz zatrici per l'alimentazione di trasmettitori. L'alimentazione dei filamenti può avvenire oltre che a corrente continua an

sogna coliegare la valvola nel modo in di 2000 dalla fig. 86 . I condensatori sono di 2000 cm . e la resistenza a presa cen irale e complessivament di $50-100$ ohm
montaggio le considerazioni e le osserva ioni pratiche riguardo all alimentazione N.B. - Nei valori indicati in Tab.VI si intende un certo quale scarto e in general
i valori applicati non sono critici tensioni di placca, essendo possibile aumentarli del $20-30 \%$ sul valore indicato dalla casa costruttrice senza che si com prometta la vita della valvola. In quanto alla resa di corrente raddrizzata si inten ne che la tensione ottenuta è in relazio quindi non sempre si potrà avere contem poraneamente la tensione e la corrente indicata nella tabella. Le R.C.A. 6 Z3 e KRI si montano con le placche in paral lelo ed è questa la ragione perchè nella tabella si notano una alternanza raddriz ata e due tensioni applicate.

Sallvatore Campus

Vedi tabella a pagiua seguente.

VORAX S. A.

MILANO
Viale Plave, 14 - Telef. 24-405
Il più vasto assortimento di tutti gli accessori e minutarie per la Radio

Ad ogni nuovo ablonamento cresconole nostrépossibilita disviluppare questa Rivista rendendola sempre più va ria, interessante, ricca ed ascoltata.

TERZAGO

M ILANO Via Melchiorre Gioia, 67 Telefono N. 690-094

Lamelle di ferro magnetico tranciate per la costruzione dei trastormatori radio -
Motori elettrici trifasi - monofasi - Indotti per motorini auto - Lamelle per nuclei comandi a distanza - Calotte - Serrapacchi In lamiera stampata - Chassis radio

Tab. VI

Marca	Tipo	Semi. onde	Filamento		Anodo Volta	Potenza resa		Note
			Volta	Ampère		Volta	Milli-Ampère	
ZENITH	R 4050	1	+	0,5	1 X 250	250		
	R 4100	2	4	2	2 X 300 2 X 400	300 400	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	
	R 5200	2	4	2	- 2×350	350	100	" \quad
	R 7200	2	7	2	2 X 400	400	150	"
	R 10 M R 20 M	1	${ }_{7}^{7,5}$	${ }_{2.5}^{1.25}$	1 X 700 1×800	700 800	${ }^{85} 000$	"
	R 50 M	1	10	3,2				"
	R 100 M	1	12	6,5	1×2000	2000	350	
	R 150 B R 250 B	1	$\stackrel{9}{125}$	${ }_{6} 5$	1 X 6000	6000	60	".
	R 2500 R	1	${ }_{16}^{12,5}$	6,5 9,5	1×8800 1×10000	8000 10000	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	" "
	R 660 R 72	1	${ }_{5}^{2,5}$	5 10	1×5000 1×7500	$\begin{aligned} & 5000 \\ & 7500 \end{aligned}$	$\begin{aligned} & 600 \\ & 6500 \\ & 2500 \end{aligned}$	Vapore di ${ }^{\text {dgg }}$.
PHILIPS	506		4	15	2×300	300	75	Vuoto spinto
	1201 1561	2	${ }_{4}^{2,5}$	${ }_{2}^{1,5}$	2×300 2×500	300 500	75 120	". ${ }^{\text {a }}$
	1801	2	4	0,6	2 2×250	250	30	
	1802 1562	1	${ }_{75}^{4}$	${ }_{1}^{0,4}$	1×250 1×750	250 750	30 110	
	1560	2	5	$2^{1,2}$	${ }_{2} \mathbf{X} \times 300$	300	125	
	2506 505	1	4	1	${ }_{1} \mathrm{X} \times 300$	300 400	40 60	
	DA 04/5	1	5	1,6	1 X 400	400	75	
	DA 08/10	1	5,7	1,9	1×800	800	15	\cdot
R. C. A.	80	2	5	2	2 X 400	400	${ }_{85}^{125}$	Vuoto spinto
	81 82	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	2,5	${ }_{3}^{1.25}$	1×750 2×500	750 500	$\begin{aligned} & 85 \\ & 125 \end{aligned}$	Vapori di Hg .
	83	2	5	3	2×500	500	250	Vapori di Hg.
	84	2	5,3	0,50	2 X 225	225	50	Vuoto " "
	${ }_{5}^{98} 3$	2	6,3 5	${ }^{0,50}$	2×225 2×500	225 500	$\begin{aligned} & 50 \\ & 250 \end{aligned}$	Vapori di Hg. Vuoto
	${ }_{6} 623$	1	6,3	0,90 0,60	2×350	350	50	
	${ }_{12} \mathrm{Z}^{2} 5$	2	6,3	0,6	2×225	450	60	Raddoppiatrice
	${ }^{25} \mathrm{Z}_{5} 5$	2	25	0,30	2×1251	250	100	Raddopplatrice
	${ }_{\text {AD }}^{12} \mathrm{Z} 3$	${ }_{2}^{2}$	${ }_{6,3}^{12,6}$	0,30 0,30	2×230 2×350	230 350	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	Vuoto
	${ }_{\text {AF }}$ F	2	2,5 63	3	2×500	500	125	
	UV 216	1	6,5	2,35	2×350 1×550	350	200	Vapori di Hg .
	UX 216 B	1	7.5	1,25	1 X 550	470	${ }^{65}$	
	UV 217 A A	1	10 10	3,25 3,25	1×1500 1×3000	-	200	
	UV ${ }^{1651}$	1	11 2,5	14,75	1 X 4000 1 X 5000	-	250 600	
TELEFUNKEN	RGN 1203	1	2,3	1,1	500	500	50	Vuoto spinto
	$\begin{array}{ll}\text { RGN } & 1304 \\ \text { RGN } & 1504 \\ \text { RGN } & \end{array}$	1	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	1,5	$2{ }_{200}^{\text {X }} 300$	500 300	100 125	
	RGN 2004.	2	4	2	2×300	200	125	
	$\begin{array}{lll}\text { RGN } & 1500 \\ \text { RGN } & 1404\end{array}$	1	$\overline{4}$	1,3	2×300 1×800	$\begin{aligned} & 250 \\ & 800 \end{aligned}$	100 100	$\begin{aligned} & \text { A gas nobile } \\ & \text { Vuoto } \end{aligned}$
	RG 52	1	16,5	8	1 X 6000	6000	600	
TUNGSRAM	$\begin{array}{ll}\mathrm{V} & 460 \\ \mathrm{~V} & 495\end{array}$				1×500	500		Vuoto
	$\begin{array}{lll}\text { V } & 495 \\ \text { PV } & 4200\end{array}$	1		${ }^{1,1}$	[1×8000	500 800	120	
	PV 495	2	4	1,1	${ }^{2} \mathrm{X}$ X $300{ }^{\circ}$	300	70	
	PV 4100	2	4	2.	2×500 2×500	500 500	125	
	PV 4201	2	4	2	2×600	600	180	
MARCONI	U 8		7,5		2×500	500	120	Vuoto
	U U 9	2	5 4	1.6	2×400 2×250	400 250	60 75	
RADIOTECNIQUE					2×280	200	125	Gas nobile
	V 155	1	1,5	4	1 X 600	-		Vuoto

THELEVISIONT

di ALIDO APIBILE

$\int 1$ modo e il grado d'illuminazione d un corpo, e la sua natura, modifica colore di esso; così, ad esempio, un cor po illuminato potentemente, viene a su
bire una più o meno grande «decolo razione », cioè il suo colore acquista un tono meno carico; il corpo inoltre, può essere trasparente, opaco, traslucido, spugnoso, ecc., e tali caratteristiche fondamentali valgono a modificare sensibil. mente il tono della sua colorazione. Un corpo lucido, perfettamente liscio, ri -ca, qualunque sia il colore del corpo stesso; così due corpi trasparenti riflet tono una uguale radiazione, tanto se il loro colore è rosso o violetto, e per distin guerne la diversità di colore è neces sario metterli contro luce e guardarli per trasparenza. Ho detto che anche il modo
d'illuminazione influisce sulla colorazion apparente dei corpi: così, per esempio un oggetto rosso posto in un fascio $d i$ luce rossa, dà l'impressione che sia nero. Molte supposizioni sono state fatte e atlrettente teorie hanno avuto modo di essere esposte sul modo col quale loc-
chio umano vede e distingue i veri colori

ii colore che il cerpo stesso lascia pas più ancora come esso può percepire alore che il corpo stesso lascia pas- e più are
sare. Anche per un solo colore, esistono il colore
infinite gradazioni di tono: un bianco, per esempio, benchè a tutia prima non sembri, non esiste in colore unico di base, ma se ne possono ottenere in numero illimitato. Si crede comunemente che, mentre, per esempio, di rossi se il bianco non vi sia che una tinta fondamentale; eppure, anche quest'ultimo co lore e ricco di variazioni, spesso imper In eetibili, che ne distinguono il caratter un corpo si dice bianco, quando ess ciflette in uguali e grandi quando ess tutte le radiazioni luminose che lo col piscono.
Quel corpo invece che, al contrario, che cioèt assorbe tutte le radiazioni dice nero.

Una spiegazione che per le sue caratteristiche è la più attendibile è la se. guente: nella retina oculare esistono maggiermente sensibili alle irradiazioni di colore; le "cellule a bastoncino» an ch esse insite nelia retina sono sensibili
solo alle radiazioni bianche, mentre quelle colorate si mantengono perfettamente inerti. Pertanto, come abbiamo visto, la parte più eccitabile della retina è la macchia lutea; ebbene, sulla retina stessa vi sono solo cellule coniche, quindi
su di essa si concentrano con superiore su di essa si concentrano con superiore nagini colorate.
Cosicche la ricezione oculare dei diverteoria più attendibile, come se nell'occhio
vi fossero tre captatori distinti, eccitabili differentemente a seconda del colore del. le radiazioni, e con varia entità di ecci-
tazione; uno di essi, particolarmente senibile al rosso arancione, un altro al rosso verdastro e il terzo al rosso indaco. Stando così gli organi e le cose,se una radiaduce un effetto vario su ciascuno dei predeti captatori, in modo tale che ognuno di questi rimanga impressionato in un senso particolare, Le tre sensazioni riunite al nero ottico, formano un'unica sensazione risultante che, trasmessa a! cervello umano, dà l'impressione ottica del colore e dell'intensità di illuminazio-
ne. Ed ecco quindi come un'unica sensazione ottica può essere provocata da in. numerevoli sensazioni elementari, differenti tra loro, ma identiche negli effetti finali cerebrali. Vediamo ora in che coa consiste il fattore «sensibilità relatiya oculare alle varie radiazioni): è bene
chiarire che l'occhio chiarire che l'occhio umano non presenta uguale sensibitat alle diverse gamme di
vibrazioni ottiche, ma che al contrario, ha un «punto» di maggiore eccitabilità intorno alla lunghezza d'onda di 5500 unità Angström, corrispondente al giallo verdastro, e che tale eccitabilità decresce in grandezza sensibilmente di maun lato, e al violetto, dall'altro. E' possi.
bile tracciare un diagramma dimostrativo che chiarisca l'andamento di questa sensibilita visiva dell'occhio umano, e se ne
trova un esempio in figura 25. Dal dia trova un esempio in figura 25. Dal dia tervallo di radiazioni alle è sensibile, è relativamente piccolo, del resto, questo rilievo è già stato fa:to pre cedentemente, allorquando si è parlato degli spettri di vibrazioni e della zona co! presa tra le infrarosse e le ultraviolet te. E così seguendo un'altra direttiva ripetiamo ancora una volta che le oscil lazioni di natura, ottica, capaci di impressionare la retina oculare, hanno per limiti estremi lunghezze d'onde rispet
tivamente di 3800 e di 7500 U. A. La curva rappresentata in figura può anche, con succes:o, essere considerata come un diagramma relativo alle cosidette «selettività oculare»; infatii da essa si apprende che locchio umano dotato di grandissima selettivitià, se si con sidera l'an
va stessa.
Però tale effetto accentuato di selettitività oculare porta logicamente ad un'al ra considerazione e cioè che le radia zon effettive, reali, provocate da un coresattamente sorgelle percepite lallo sono umano, bensì dipendono in forte misura dal grado di colorazione di esse. Quindi
occhio umano non può essere preso quale misuratore di radiazioni luminose in senso assoluto, ma occorre tener pre sente che esso e partioolarmente sogget false valuazion; ; infatti due sorgent radiante, possono sembrare, nella valutazione diretta, di differente intensità, se colori che ne formano il tono non sono guali; ad esempio, una radiazione vere, apparirà più viva d'una rossa, anche le reali intensita lum cono tra di loro.
assegnare ai «quadri» dio dei colori da di principale importanza: del resto l'eposizione fatta basta da sola a dimo rarne il valore. E' cosa logica il cer are di dare agli oggetti trasmessi u
rado di illuminazione il più piccolo pos sibile, e le ragioni di ciò sono troppo chiare, che non richiedono spiegazioni E cosi si preferirà operare, ove sia po sibile, con radiazioni verdi o meglio an cora gialle, le quali, a parita di tenore uminazione, risultano più brillanti on, per esempio le radiazioni rosse Tale accortezza, naturalmente, non si ri erisce ai «fondi», i quali, anzi, è ben he provochino con gli oggetti un con rasto accentuato, e quindi, di conseguen a, è preferibile siano meno brillanti.
(Continua)

SCATOLA

DI MONTAGGIO

 NOVA 500LA SUPER PIÙ MODERNA A DISPO SIZIONE DEI RADIO-DILETTANTI

A ROMA:

Rag. Mario Berardi
 Via Flaminia, 19 - Tel. $\mathbf{3}_{1994}$

MONOBLOCCO A. F. della scatola nova 50

1. Monoblocco interamente schermato - 2. Filtro di banda in entrata - 3. Filo di aereo schermato - 4 . Val vola convertitrice incorporata - 5 . Compensatori montati su frequenza - 6. (ommutatore a basse perdite Bobine montate direttamente senza collegament Bobine individuali per ogni gamma - 9. Con densatore variabile triplo per la migliore selettività.
di raggi rossi, non ha alcuna proprietà
su d'esso, mentre è capace d'assorbire, o meglio, d'arrestare, tutte le radiazioni d'altro colore.

Cinmemasoncio e
granalle ampllicaficamaiome
di
vi. Caligaris

doppiaggio

Per doppiaggio, o versione, si intendi un film in una determinata linguaUn di un film in una determinata lingua. $\dot{\text { a }}$ appunto questo, poiché il film infati nale risulta parlato e dialogato nel lin. uaggio usato dagli attori che lo hanno interpretato.
Questo sta bene finché il film è proiettato nello stesso paese di origine. Ma quando deve essere esportato evidente che occorre tradurre tutte le
scene parlate nella lingua del paese in cui deve essere proiettato.
L'operazione del doppiaggio è effetuata in appositi stabilimenti espressa. mente attrezzati per questa delicatissima operazione.
Il procedime
mente questo.
Ci sarà innanzitutto chi si incarica di rradurre, mettendo per iscritto, ciascuaa scena del film originale.
In questa operazione si cerca per quanto. e possibile, sione, e le stesse sfumature di espres sioni del dialogo originale, nonché la stessa lunghezza, o, per meglio dire,
che possano richiedere l_{0} stesso tempo he possano richieder
Si suddivide poi tutto il film in un
gran numero di scene elementari e bre vi in corrispondenza dei brani tradotti, gistrazione nella nuova lingua. Si sceglieranno perciò dei nuovi in terpreti che dovranno avere voci molt chiare, il più possibile simili nel tim bro a quelle degli interpreti originali, e che siano in grado di renderne tutte
le sfumature dell'espressione richieste dalle circostanze dell'azione.
In un apposito locale è disposto un apparecchio di proiezione che proietta le successive scene in una saletta in
cui si trovano dinanzi ai microfoni doppiatori con le loro parti scritte. Dopo successive prove di proiezion i nuovi interpreti del suono saranno to frasi in pronunciare quelle determina te frasi in quel determinato modo e In certi casi è necessario addiritura pronunciare frasi e parole che diano dei movimenti in tutto simili a quelli delle labbra dell'interprete originale. Quando il sincronismo è ritenuto suf ficiente si fa la prima registrazione de nuovo dialogo.
Su una spe \qquad prove definitive del dia logo già registrato con la proiezione. Essendo però le registrazioni ancor indipendenti, e date le caratteristiche d
sibile, ritardando o accelerando i dy ovimenti di avanzamento del sonoro della fotografia, correggere piccole diffe renze che ancora esistessero. Quando il incronismo è giudicato soddisfacente s fa la registrazione definitiva della nuov nodo che può essere oramai stampata fanco della fotografia per ottenere le nuove copie doppiate nella nuova lingua Quanto è stato detto per il dialog que che siano a questi inframmezzati he perciò devono essere riprodotti con appositi apparecchi per la produzion Nel rumori artificiali.
Nel caso invece di lunghi tratti senz dialoghi, composti cioe soltanto di ru
mori, di suoni o di canti che si devono conservare soli, si riportano senz'altro sulla nuova pellicola senza assoggettar processo di doppiaggio.
Risulta evidente da tutto questo un fualche volta osservato, e cioè che filn doppiati hanno delle registrazion onore in molti casi migliori dei film irati direltamente e questo risulta or vidente: le difficoltà che si presentan nel registrare alcune scene dal vero, dal
punto di vista del sonoro non esistono più nel doppiaggio, poiché in questo caso i microfoni sono sempre in posizione itima rispetto alla sorgente sonora e condizioni acustiche del locale in ca sono eseguite le registrazioni sono certa-
mente le migliori che si possano desiderare.
Con questo è ultimata la parte rela Siamo registrazione del film sonoro Siamo convinti che non sempre vì quanto si è esposto, ma è necessario

O. S. T.

Soc. An. Officina Specializzata Trasformatori Via Melchlorre Glola, 67 - MILANO - Telefono N. 691-950

AUTOTRASFORMATORI FINO A 5000 WATT - TRASFORMATORI PER TUTTE LE APPLICAZIONI ELETTRICHE - TAVOLINI FONOGRAFICI APPLICABILI A QUALSIASI APPARECCHIO RADIO - REGOLATORI DI TENSIONE PER APPARECCHI RADJO

Laboratoplo Speclallzzato Radioriparazion
RIPARAZIONI CON GARANZIA TRE MES

noscere questi procedimenti per potere co dinanzi all'obbiettivo di proiezion eeguire con maggiore sicurezza quanto
verrà detto ora sugli apparecchi di ri produzione, argomento certo di più grande interesse per un maggior numero li persone.

Apmarecehi
 di riproolluzion

In un inpianto completo per la ruro duzione di film sonoro si possono considerare due parti, che, pur essendo disenso che non se ne può scindere il funzionamento completanente.
Troviamo infatti un complesso mecca-
nico-ottico destinato ad imprimere il movimento di avanzamento al film per la
proiezione, ed un complesso ottico-elet-

amplificazione del sonoro.
Questa seconda parte ottico-eletroacu stica, per quanto gruppo separato, ha in comune con la prima i sistemi di avan zamento del film: da questo appunto de noro dal complesso. noro dal complesso
Noi ci siamo preposti lo sudio della magyiore cura ed ampiezza possibile, ma non possiamo trascurare in questo mo mento il complesso puramente meccanic data la stretta relazione che il suo funzio namento ha con il complesso sonoro. Esaminiamo perciò molto sommaria film nei riguardi della proiezione. Pé ottenere al nostro occhio la persistenza delli'mmagine proiettata sullo schermo nonchè la sua nitidezza rispetto a movimento delle scene che si svolgono lo: un fotogramma, cioè una immasine elementare del movimento della sce na, resta immobile :otto la luce dell'ar
o dinanzi all'obbiettivo di proiezion er una determinata frazione dis secindo. mette rapidamente in movimento e posta di una quantità corrispondente satamente alla lunghezza di un foto gramma, in modo che viene portato di unzi al sistema ottico di proiezione il otogramma successivo
Durante tutto guesto periodo di movi tore che la riapre quando la pellicola arrestata nella nuova posizione, nell quale riprende il ciclo.
Nell' introdazione del sonoro questa ciclo completato cioè la fase di sosta piz la fase di movimento avvengono in $1 / 2$ secondo.
Questo ventiquattresimo di secondo si ripartito:
1/4 per la fase di movimento senza luce

1 fotogramma); 3/4 per la fase di sosta (proiezione).
Da quanto detto risulta che per la Driezione la pellicola è sollecitata a muo位si a scatti rapidi, cioè con moviment intermittente
Questo movimento è dato, nella ma canico detto croce di Malts
canico detto
Per evitare
giscano dirett
iscano diretiam che questi strappi uale è avvolta la bobina nella an mano proiettatallicola, che vien o dentato che lata, esiste un tambuforme e ne porta al meccanismo di scat to successivamente la piccola quantita necessaria all'avanzamento di un foto gramma.
Analogamente, quando la pellicola h lasciato il meccanismo di scatto, esi nn secondo tamburo dentato che ruota la quantità di film che si accumula improvvisamente ad ogni scatto per cederla senza scosse alla bobina avvolgente inf riore
sonora con un segmento luminoso dello tesso spessore di quello che servì a regiicola si muove di punto in cui a pel uniforme
Questa esplorazione si effettua con ui dispositivo detto testa sonora
In questo dispositivo esiste un sistema ottico che produce un segmento lumi noso di adatte dimensioni sulla banda so. nora del film mentre questo è trainato da
un sistena meccanico munito di filtri anmortizatori studiati per l'eliminazione più completa (per quanto possibile) delle eventuali irregolarità di avanzamenio impresse alla pellicola dal movimento del proiettore.
La luce che riesce a passare oltre la pellicola attraverso le variazioni di traspa
renza esistenti nella colonna sonora col pisce lo strato sensibile di una fotocellula che provoca perciò nel circuito elet trico al quale è collegata, delle variazio ni di corrente proporzionali alle modula
In fig. 1 è rappresentata scrematica.
mente la disposizione di un inte la disposizione di un proiettore
cinafico (sola proiezione muta). Riferendoci a quanto è stato detto in precedenza a proposito della registrazione fotografica del suono su pellicola, risulta evidente che per la perfetta riproduzione di quanto è stato registrato dob-

-hlath ind
quale e stata regisirata, si conclude che è ghezza del una regolazione della lun ghezza del segmento per lo sfruttamento
completo e razionale della banda sonora qualunque siano le sue dimensioni (nei limiti, s'intende, delle registrazioni esistenti).

Le soluzioni adatate per raggiunger Ciascuna casa sono diverse. Ciascuna casa fabbricante di teste so
nore ha adotato un sistema suo nore ha adottato un sistema suo.
Citeremo qualcuno dei più sono anche quelli che si riscontrano frequentemente.

Fis. 3
La fig. 3 ci mostra come sono dispost componenti di questo sistema. Come può osservare, una lampadina a filament metallico spiralizzato e ad asse rettili neo (fig. 4) è posta di fronte ad un can nocchiale in modo che il suo filament ottico del cannocchiale.
Un primo sistema di lenti (condensa (ore) mette a fuoco il filamento su un enditura meccanica disposta nell'interno del cannocchiale ed avente una lunghez a di circa 5 millimetri per uno spessor

Questa fenditura meccanica risulta quindi fortemente illuminata e di forn leli e rettiline
Un secondo sistema di lenti (obbiettivo) proietta, riducendola alle dimension Vlute, questa inmagine luminosa sul film
esatiamente a fuoco sul piaro della latiamente a fuocta sul piaro della ge
lat Ora dobbiamo
le colonne sonore hanno la stessa larghez
za. Poichè per una buona esplorazione
della lettura la banda sonora deve essere illuminata in tutta la sua larghezza nella

Strumento di misura improvvisato per regollare l'allineamento dei coindensatori

Un assiduo, il quale teme che l'alli-
neamento del suo condensatore multiplo non sia più perfetto, ci domanda di descrivere un metodo semplice per la menti di laboratorio. menti di laboratorio.
niente di meglio del circuito rappresentato nella figura; detto circuito si basa sul principio di assorbimento.
Si tratta di montare un circuito Si tratta di montare un circuito oscilgriglia e di una rivelatrice a reazione, cercando di accordarlo mediante una qualsiasi sezione del condensatore muliplo, spostando il terminale di connes-
\qquad
Avremo inoltre un circuito d'assorbi-
mento consistente in una bobina accop-
strumento segnerà, appena il circuito di assorbimento si troverà in sintonia col circuito di griglia.
Avremo cura di regolare i compensa
tori su una lunghezza tori su una lunghezza d'onda piuttosto
bassa, in modo che il punto di risolo bassa, in modo che il punto di risonanza
del condensatore di sintonia del cir cuito d'assorbimento, sia esattanente l_{0} stess qualsiasi sezione del condensalore multiplo venga connesso in 1,2 o 3 . L'operazione di controllo si effe ettuerà manovrando lentamente il condensatore
in molteplici posizioni ed osservando se a ciascuna posizione corrisponde lo stes so punto di assorbimento, astrazion fatta dalla sezione del condensatore posta in gioco.
I compe
cati che dopo questa regolazione preli minare.

iata all'avvolgimento di griglia d'un quale sia stato posto in derivazione nito di una scala leggibile; un milliam rometro verrà inserito nel circuito ano. dico dell oscillatrice perché esso possa
indicarci l'esatta risonanza. L'ago dello

Questo metodo \dot{e} applicabile per il controllo di un condensatore a sezioni
diritue, ma non diritte, ma non è consigliabile il suo
impiego per il controllo d'una sezione d'oscillatore che abbia le placche di forma diversa.

RADIOTECNICI
RADIORIPARATORI
AUTOCOSTRUTTORI
per i Vostri fabbisogni di apparecehi, seatole di montaggio, parti, valvole, ece. chiedet il nostro listino

RISPARMIERETE
SLIAR - Stab. Ligure Industria Apparecchi Radio - Vico del Campo, 4 - GENOVA
UN IDUE IPIU UNA A IRIEARIONE FRIENATIA

B. V.
 139
 DI
 GIIDVANNI C(IPIPA

Il problema del frenamento della reazione è da moltissimo tempo ed è tutt'ora uno dei problemi principali, particolarmente per ciò che riguarda i piccoli ricevitori.
Il bivalvolare che qui esponiamo presenta una semplice ed efficace applicazione di tale principio e diverse altre piccole innovazioni che lo rendono molto efficiente malgrado le piccole dimensioni.
Il frenamento della reazione è realizzato secondo un principio che differisce notevolmente dai consimili sino ad ora noti.
Infatti, l'apparecchio può entrare in autooscillazione (innesco) e quindi produrre fischi, ma tali

disturbi non vengono irradiati dall'aereo e rimangono localizzati nel solo ricevitore.
Questo fatto permette di usare liberamente l'apparecchio senza tema di disturbare gli altri rice
vitori.
E^{\prime} però doveroso avvertire che una piccolissima parte del disturbo viene irradiata e precisament a causa delle capacità parassite fra i collegament

La proporzione di tale irradiazione è però così esigua da non superare quella che si ha in una normale supereterodina per gli accoppiamenti parassiti dei conduttori con l'oscillatore della stessa.

Il principio di funzionamento è il seguente:
Un avvolgimento di aereo (L_{t}) è accoppiato all'induttanza di sintonia (L_{2}) e compie il suo normale trasferimento di energia ad AF.
Accoppiato all'altro estremo di L_{2} è l'avvolyimento di reazione (L_{3}) che svolge la sua normale funzione
Trascuriamo per il momento la importantissima funzione di L , e vediamo quanto avviene. Se il controllo di reazione è tenuto al minimo la valvola fa la semplice funzione di rivelatrice, se il controllo viene invece regolato al limite dell'innesco si ha il compensamento delle perdite del circuito oscillante di sintonia, con un massimo di
ricezione (ciò che nella trattazione teorica è deila introduzione di resistenza negativa per il compenso della resistenza positiva del circuito oscillante) Oltre tale limite la valvola diventa generatrice di oscillazioni, le quali, a causa dell'accoppiamento fra L_{1} e L_{2} vengono lanciate nel circuito di aerco A tale punto però entra in gioco la funzione di L_{4}, avvolgimento di poche spire strettamente ac. coppiato alla bobina di reazione e disposto in serie sul circuito d'aereo.
A cagione della sua prossimità alla bobina di reazione tale avvolgimento diviene sede di una f f. e. m. alternata ad AF uguale e contraria (dato i) senso di avvolgimento) a quella che si è formata dell'avvolgimento di aereo (L^{1}) ed essendo disposto in serie a questo ne annulla gli effetti riducendo a zero la corrente di aereo. Avviene insomma conne quando si connettono in serie due batterie effettuando il collegamento fra due poli delo stesso

Riceuitore Reflex a tre valuale per anide medic. can presa por fanagrafo.

UNDA RADIO-DOBBIACO per I'tatia a Colonie Th. Mohwinckel Mulano. Via Quadronno 9

una certa resistenza la cui funzione è degna di nota Infatti, in condizioni normali, al di sotto dell'in nesco, nel circuito di reazione non vi è corrente 0 meglio vi e corrente di AF in proporzioni esigue Come avviene l'innesco, detto circuito diventa sede di una corrente ad AF abbastanza intensa che e appunto quella che fa crescere oltre misura il potenziale oscillante del circuito di sintonia.
La resistenza che come si è visto rimane inserita, quando viene attraversata da tale corrente, dissipa energia ad alta frequenza e precisamente in proporzione al valore della resistenza
Q intensita che la attraversa
Questa energia viene sottratta a quella in oscil azione nel circuto di scillante di facilitando perciò l'eliminazione della irradiazione facilitando percio l'eliminazione della irradiazione ell aereo
Infine, una ultima cosa che si deve porre in rilievo, sopratutto per quello che riguarda potenza la BF.
La prima cosa che facilmente si rileva ad occhio l'assenza del solito condensatore di grande capa

Thli schemmi costrouttivi

 in grandezza naturale degli apparecchi descritti in questa rivista sono in vendita presso la nostra amministra composti di due fogli di L. 6 se compostid'un solo foglio. a agli abbonati si cedono a metà prezzocità in parallelo alla resistenza di catodo della val vola d'uscita.
Si nota invece la presenza di un ponte di resistenze per la polarizzazione della griglia della val vola finale stessa ed un condensatore da 0,1 che connesso fra il centro di detto ponte ed il catodo della finale.
In tale modo si viene ad eliminare completamen te il fenomeno di controreazione a cui dà luogo normalmente la resistenza di catodo e che porta nevit'uscita e delle note basse esasperando ancoenza d'uscita de a maggiormente le acute
Questo accorgimento ne ha reso indispensabil in altro sulla placca della rivelatrice anche qui con un condensatore di 0,1 che va al catodo della finale.
Questo accorgimento è stato necessario per im edire che la griglia della finale, attraverso la ca pacità di 20.000 cm . e la resistenza di 200.000 as sumesse un maggior accoppiamento con la massa che col proprio catodo, e ciò al fine di impedire an ritorno per tale via della lamentata controrea ione di $\mathbf{B F}$
Per quello che riguarda la descrizione costruttiva del ricevitore non vi è molto da dire.
Lo chassis ha le dimencioni di 29.5×11.5; si comincia la foratura seguendo lo schema di monlaggio.
A foratura finita si fissano gli zoccoli, indi il rasformatore d'alimentazione, si fanno i collegamenti alla ' 80 , ai filamenti della 77 e della 42 con elative connessioni a massa, si fanno i collegamenti ai catodi.
Si possono poi montare il variabile ad aria con cala numerata, il potenziometro e i due elettroli tici; si effettueranno i collegamenti relativi con re sistenze impedenza e capacità come da schema, con servando però libero in prossimità degli elettroliti ci il posto per il trasformatore di AF

Questo andrà connesso per ultimo.
Esso si compone di avvolgimenti su tubo di ba kelite di $4 \mathrm{~m} / \mathrm{m}$. di diametro.
Il senso di avvolgimento è unico per tutti, le eventuali inversioni sono previste nelle connession visibili in figura-
Si comicerà con la bobina d'aereo che si compone di 22 spire filo $3 / 10$ smalto, iniziando dall'estre mo del tubo opposto a quello che si fissa allo chasdetto avvolgimento si inizia nello stesso senso l'av vollgimento di L . che si compone di 90 spire filo $3^{\prime} 10$ smalto.
Alla fine di detto avvolgimento, a 3 mm . di distanza inizia l'avvolgimento di reazione con 25 spire dello stesso filo, a 2 mm . della fine di que sto vi è quello della controreazione di aereo che si compone di 9 spire dello stesso filo nello stesso enso.
Nell'interno della bobina vanno fissati il con densatore e la resistenza per la griglia della 77. 11 fillo che va al variabile di sintonia e quello che va alla griglia della 77 , possono per il tatto

iradiodisturbi prodotí dagel apparecchi elettrodomestici...

possono venir eliminati con molta facilità. Basta applicare al loro cordone di alimentazione dalla DueqTl e detto appunto

SILENZIATORE DACORDONE

MOD. 2505.3
di facilissima applicazione Chiare istruzioni lo accompagnano Simina completamente i radiodl sturbi prodotti da apparecehi sciugacapelli, lueida - ¿pavimen macina-caffè, aspirapolvere, refri eratorii ventilatori, nonehe da real gistratori di cassa, maechine colatrici, giocattoli elettrici e simtli

CHIBDETECI I LISTINO, " 2500 ,

SOCIETA' SCIENTIFICA RADIO BREVETTI DUCATI - BOLOGNA

RESISTENZE CHIMICHE

$0.25-0.5-1-2-3-5-$ Watt
Valori da 10 Ohm a $5 \mathrm{M} . O \mathrm{hm}$
RESISTENZE A FILO SMALTATE
da 5 a 125 Watt
LE PIÙ SICURE - LE PIÙ SILENZIOSE: MONTATE SU TUTTI GLI APPARECCHI DI CLASSE DELLA STAGIONE 1936-37

MICROFARAD

MILANO ~ VIA privata derganino, 18-20 - TELEF. $\overline{97-077-97-144} \sim$ MILANO
comune essere abbinati insieme e dovranno fare un percorso il più lontano possibile dai fili connessi alle placche
Il filo di griglia della 77 deve essere racchiuso nello schermo insieme alla valvola perchè altrimenti nascono fenomemi di reazione a BF; a tale e necessario forare lo zoccolo di detta valvola. quelle di 420 ohm che è da 3 watt. $\square 1$ condensatore da $2000 \quad 3 \mathrm{~F}$
una placca della ' 80 e massa va fissato solta fra una placca della 80 e massa va fissato soltanto a
prove fatte e serve per togliere completamente il ronzio di CA che si ha sulle stazioni più potenti. La placca alla quale va connesso va trovata per tentativo.
Le valvole impiegate sono delle più comuni ed economiche, a 6,3 volt. Il loro uso è preferibile a quello delle valvole multiple che costano care e non sempre sono ottime. Si pensi inoltre che quando una valvola doppia si guasta... se ne guastano in effetto due contemporaneamente.

Un importante accessovia

Abbiamo detto che la reazione si considera, a causa degli effetti che produce, come una riduzione della resistenza offerta dal circuito oscillante. Orbene, questa influenza, in, un normale ricevitore si fa sentire anche sul circuito d'aereo la cui resi-
stenza viene diminuita (apparentemente) stenza viene diminuita (apparentemente).
tro reazione, il fenomeno della a causa della contro reazione, il fenomeno della riduzione della reha però una sensibilità tale da compensare questa mancanza. Si può però aumentare ancora il rendimento del complesso ricevente mediante un filtro speciale da aggiungersi in serie all'aereo.
${ }^{D}$ Detto filtro non ha, come gli analoghi, la funzione di opporsi ad una determinata frequenza di cui si vuol attenuare la ricezione, ma ha invece quella di ridurre la resistenza del circuito d'aereo per la frequenza che si vuol ricevere, dunque un funzione attiva e non passiva
Il filtro si compone di un avvolgimento su tubo di bakelite da mm. 4 composto da 85 spire di $3 / 10$ e da un condensatore (anche a mica) di $500 \mu \mu$. F di capacità disposto in serie a detto avvolgimento. Il condensatore del filtro deve essere montato nel mobile in posizione tale da essere facilmente manovrabile perchè va regolato ad ogni ricerca di L'imp.
L'impiego del filtro migliora la selettività e la Segue elenco del mare che è già ottima.
Segue elenco del materiale impiegato.
Giovanni Coppa
Materiale impiegato
N. 4 resistenze 0,5 mega ohm $1 / 2$ watt
") 1 resistenza 0,2 mega ohm $1 / 2$ watt
") 1 resistenza 50.000 ohm $1 / 2$ watt
") 1 resistenza 1 mega ohm $1 / 2$ watt
") 1 resistenza 420 ohm 3 watt
) 1 potenziometro 50.000 ohm-pasta con in err.

LEsA

La "Lesa, ha pubblicato il nuovo Catalogo ${ }_{19} 3_{7}$. Richiedetelo e vi sarà inviato gratuitamente.
La "Lesa" malgrado le difficoltà di ordine generale relative agli approvvigionamenti, fedele al suo programma in tema di qualità, ha perfezionato moltissimo tutti i suoi prodotti.
Milano ~ Via Bergamo, 21

DINEIDA

La Soc. Anon. FABBRICA ITALIANA MAGNETI MARELLI, di Milano, constatando che sono
apparse sul mercato, anche in dotazione ad appaapparse sul morcato, anche in dotazione ad appa-
rechi radioriceventi di qualche Casa costrutrice, rechi radioriceventi di qualcho Casa costrutrice,
TIP1 DI VALVOLE TERMOONICHE A BULBO METALLICO importate dall'estero, ad evitare incre-
sciosi sviluppi della situazione

ricorda

che essa Soc. An. FABBRICA ITALIANA MAGNETI MARELLI è detentrice dei brevetti italiani N 335951
$335952-341409.341692 .341933-346426$ risuar $335952-341409$ - $341692 \cdot 341933-346426$ riguar.
danti valvole termoioniche a bulbo metallico
di aver già promossi i primi procedimenti giudiziari a carico di talune Case e Ditte finora individuate
come contraffattrici delle privatione come contraffattrici delle privative suddette

diffida

chiunque non sia da lei autorizzato dal far commercio di oalvole termo ioniche a bulbo metallico costruite in
conformità alle privative industriali italiane sorari. conformità alle privative industriali italiane soprari.
cordate, avvertendo che, a tutela dei propri interessi cordate, avoertendo che a tutela dei propri interessi.
essa Soc. An. Fabbrica Italiana Magneti Marelli pro-
cederà dora innani cederà d'ora innanzi, eventualmente anche a termini delle oigenti disposizioni penati, contro tutti
indistintamente coloro che si renderanno colpevoli di spaccio contraffattivo delle valvole stesse, sia importate che di fabbricazione nazionale, e cosi sciolte come montate su apparecchi.
Milano addi 15 marzo 1937
pabBRICA ITALIANA MAGNBTI MARBLLI

2 condensatori elettrolitici $8 \mu \mathrm{~F}-500 \mathrm{~V}$ (Micron) 3 condensatori a carta $0,1 \mu$ F
" 1 condensatore a carta 20.000 к.u. I
,) 1 condensatore a carta $3000 \mu . \mu . \mathrm{F}$
" 2 condensatori a carta 2000 ,,$\mu \mathrm{F} . \mathrm{F}$
" 1 condensatori a mica 250 仯 F
") 1 condensatore a mica 100 u.f. F
" 1 impedenza di placca per AF
" 2 zoccoli americani 6 piedini
", 1 zoccolo americano 4 piedini
", 1 schermo per valvola americana (Geloso)

") 1 condensatore va
" I Altoparlante dinamico, uscita per pentodo im pedenza 7500 ohm ; resistenza del campo 2500 ohm.
" 1 trasformatore alimentazione (Nova) 40 watt primario 110-125-145-160-220 rispettivamente (rosso, giallo, verde, bleu, nero).
Secondario AT $360-0-360$ volt. 45 MA , rispettivamente: (giallo, marrone, giallo). Secondario 5V-2A (azzurro, azzurro). Secondario accensione 0 $-2.5-6,3 \mathrm{v}$ V-2.5 A rispettivamente (bianco-giallo, bianco-rosso bianco-verde).
N. 1 valvola $\mathbf{u} \times 280$ (Fivre)
" 1 valvola ${ }^{\prime}{ }^{\prime} 42$ " 1 valvola ${ }^{\prime} 77$ "
$\begin{array}{ll}\text { " } \\ \text { " } & 1 \text { valvola }{ }^{\prime}{ }^{\prime} 77 \\ \text { chassis } & 29.5 \times 11.5\end{array}$
") 1 clips per valvola schermata
") 1 clips per valvola sch
$0,5 \mathrm{hg}$. filo avvolgimento $3 / 10$ smaltato
1 tubo bakelite mm. 70×40 diam.

nessuna preoccupazione

di ricerche o di sorprese, quando si è ab-
bonati a IG CORRIERE DELLA STAMPA, l' Ufficio di ritagli da giornali e riviste di tutto il mondo. La via che vi assicura li controllo della stampa italiana ed estera è una

ricordatelo bene

nel vostro interesse. Chiedete informazioni
e preventivi con un semptice biglietto da

IL

CORRIERE
DELLA

Direttore TULLIO GIANETTI
TORINO
Via Pietro Micca, 17 - Casella Postale 496

ha PAGINA IDIUL PIRINCIPIANTVE

Induzione - Elettromagnetismo Induzione? - Sissignore induzione! Ma non si era detto che si sarebbe cam. Non siamomento, diranno i lettori? loinduzione sciorinata in mille salse in parecchie colonne? - E vero, ma quel. la che abbiamo trattata era un'induzio
one... come dire, elementare, da princiene... come dire, elementare, da princi-
piante, mentre ora non si tratta d'in duzione magnetica, o d'influenza e in tendiamo parlare di altri induttori e di altri indotti, diversi p. es. dagl'indotti che si trovano in vicinanza della famosa
bacchetta di vetro o di ceralacca, già acquisita alle cognizioni del lettore. Il lettore che aspira a conoscere e magari a costruire un apparecchio radio, avr sentito parlare di bobine e di trasfor matori. Ebbene sappia che per conosce-
re le funzioni di una bobina o di un trasformatore deve sapere qualche cosa del genere d'induzione di cui vogliamo ora trattare. Abbia pazienza il lettore e s'induca a seguirci in quello che andre ni premature.
Supponiamo di avere un circuito elettrico nel quale circoli la corrente generata da una batteria di pile e che sì possa interrompere (aprire) a volontà interruttore (circuito B della fig. 22)

Accanto ad un siffatto circuito, dispost parallelamente ad esso, disponiamo u amperometro (circuito C).
amperometro
Mentre nel primo cito circuit
corrente, l'amperometro del circuito
rimarrà con la lancetta allo zero, deno
tando l'assenza di una qualsiasi corrente nel circuito stesso. Interrompiamo rapi-
damente il primo circuito (B) mano vrando il tasto; la lancetta dell'ampe rometro del circuito C farà un piccolo balzo nella graduazione segnando un istantaneo passaggio di corrente. Se noi
disponiamo le cose in modo da potere, disponiamo le cose in modo da potere,
comunque, ma piuttosto bruscamente, variare l'intensità di corrente nel circuito B osserveremo che ad ogni variazione di corrente in B corrisponderà un adeguato passaggio di corrente nel circuito C. Tale passaggio di corrente, pero, sussiste solo
pel tempo nel quale avviene la varia zione di corrente nel circuito inducente. Come si vede si tratta di un'azio.
ne elettrica senza contatto tra i due cirne elettrica senza contatto tra i due cir-
cuiti, a distanza. Ouest'azione, quindi, cuiti, a distanza. Quest'azione, quindi,
rientra nel campo dei fenomeni d'indu-
zione. Il primo circuito (B) che con il variare dell'intensità della sua corrente corrente si altro (C) una corrispondente C) si chiama secondario.

Evidentemente, anche qui, abbiamo un flusso
cuiti.

Induzione elettromagnetica.
Un fenomeno analogo a quello ora d critto si ottiene, agnche quetituendo ircuito munito di sorgente eletrica quind
mita.
Per
Per meglio intenderci supponiamo che

si abbia un conduttore a forma di spirale (fig. 23) e che i suoi capi siano
collegati ai morsetti di uno strumento collegati ai morsetti di uno strumento che indichi passaggi anche piccoli metro).
Se noi nell'interno della spirale fat Se noi nell'interno della spirale fac-
ciamo muovere, lungo l'asse, un magne ciamo muovere, lungo l'asse, un magne-
te, osserveremo che ad ogni movimento te, osserveremo che ad ogni movimento
di questo lo strumento indicherà un di questo lo strumento indichera un pas-
saggio di corrente nel conduttore. Qui saggio di corrente nel conduttore. Qui
dunque avremo un fenomeno che risul. ta dall'azione magnetica della calamita e che si manifesta con corrente elettrica, avremo cioè un fenomeno d'induzio.
ne elettromagnetica ne elettromagnetica.
a corrente elettrica come ane prodota citato d'induzione prodotta dal magnete, gli effetti prodotti (la corrente nel cir-
cuito secondario cuito secondario o indotto) sono tanto
più intensi quanto più intense sono

RADIO ARDUINO

Torino - Via S. Teresa, 1 e 3
II più vasto assortimento di parti staccate, accessori, minuteria radio per fabbricanti e rivenditori
(Richiedeteci il nuovo catalogo illustrato
n. 28 dietro invio di L. o.5o in francob.)
variazioni di corrente nel primario e quanto più forte è la magnetizzazione
del magnete e più rapidi sono gli spo. del magnete e più rapidi sono gli spostamenti nell'interno della spirale.
Nel primo caso, quando si hanno cioè Nel primo caso, quando si hanno cioè
due circuiti, se noi facciamo percorrere due circuiti, se noi facciamo percorrere
da corrente anche il secondo circuito, da corrente anche il secondo circuito,
vedremo che anche nel primo avvengono vedreno che anche nel primo avvengono mo visti succedere nel secondo. La cor rente di un circuito agisee su quella
dell'altro ed, a sua volta, subisce l'a. zione della corrente dell'altro circuito Si hanno cosi fenomeni che si dicono di mutua induzione.
Per ora ci basti avere accennato fugacemente ai vari fenomeni elettrici de
genere trattato genere trattato. Avremo occasione di ri-
tornare sull'argomento. Prima di chiu. dere questo capitolo diciamo qualche cosa sugli elettromagneti.

Elettromagneti.

Se noi disponiamo di un pezzo di Se noi disponiamo di un pezzo di
ferro. il più puro possibile, della forma ferro. il piu puro possibile, della forma esso avvolgiamo a spirale un condutto re, osserviamo che allorquando facciamo percorrere il conduttore da una cor
rente elettrica il nucleo di ferro si ma gnetizza, diventa cioè calamita. Però

questa qualità è mantenuta dal ferro solo pel tempo nel quale circola la cor rente nel circuito: si ha cioè quella che
noi abbiamo definita calamita temporanea, con in più la possibilità di avere sempre disponibile immediatamente, con la semplice chiusura del circuito elet
trico, una calamita, trico, una calamita, capace di attrarr materiali magnetici e di compiere quin di lavori che a noi interessano. sto sistema, si ha la possibilità di di sporre di calamite molto forti, qual
necessitano necessitano nel campo industriale d'altra parte, il carattere di temporanei
tà della elettrocalamita (meglio, dell'e lettromagnete) è utilissimo in certi casi specialmente in telefonia e radiotelefo nia, cosi pure in tanti meccanismi ausi liari che sarebbe inopportuno ora de a qualche esemplare Vogliamo alluder a quei meccanismi elettrici che son noti col nome esotico di rélais.
Più comunemente gli elettromagne (come avviene anche per le calamite pe
manenti) si costruiscono a forma di fer
ro di cavallo. Fra i due poli che si atnuleo di ferro si , ai due estremi del magnetico e le linee di forza si svilup pano essenzialmente fra un polo e l'al tro, mentre la parte curva dell'elettroca lanita risulta non avviluppata da linee magnetico, anche gli avvolginenti de condultore si addensano ai due poli (fig. 24).
Fer concludere quanto abbiamo esposto circa i fenomeni d'induzione e di elet del lettore sull'analogia dei fenomeni che si hanno, sia in presenza di un condut tore percorso da corrente elettrica, sia nel canpo magnetico di una calamita. I entrambi i casi si ha certamente una modificazione dello spazio circostante,
sia al conduttore e sia alla calamita. Sen za una tale ipotesi non si potrebbero spie gare i fenomeni ora descritti e che denotano azioni e reazioni di corpi speciali, posti a distanza uno dall'altro.

La corrente alternata. lino ad ora, occupandoci della corrente elettrica, noi abbiamo supposto che tale corrente, per ogni singolo caso, più o meno costanti. Questa unifenita
iv valori risulta più evidente, se in it con d uno per quanto la detta uniformità si poss riferire anche a periodi grandi di ternpo. Il fatto della direzione, del senso i. es. rimane costante sempre, quando i tratti, appunto, di corrente continua.
Non allo stesso modo si comporta corrente eletrica quando essa appartiene al genere che si dice «corrente al. ternuta)".
ficiente per la comprensione di quanto in seguito esporremo.
La caratteristica della corrente alter-
nata è verso a dei cicli. Essa non si manifesta con una intensità costante, ma con pe riodiche variazioni. Ha un inizio che dal. lo zero sale rapidamente, attraverso tutti valori intermedi, verso il suo valore
più alto, poi ridiscende riprendendo, in senso inverso, i valori di prima e arriva di nuovo allo zero, l'oltrepassa e, con

Non è possibile dare un'idea compiuta e rigorosa di quello che è una Instrate alternata, poichè il genere della pianti non ci consente di valerci princignizioni la cui assenza nei nostri let ori ci obbligherebbe a lunghe disserlazioni di elettrotecnica, mentre noi voComunque cercheremo dilla radio. Comunque cercheremo di dare un idea
direzione opposta alla iniziale, aumenta di valore fino a raggiungere il massimo gia toccato precedentemente per poi invertire di nuovo la sua direzione (ri.
prendendo quindi, di nuovo, cuella presa all'inizio) e così continuare il suo procedere.
Rappresentiamo graficamente il fenomeno (fig. 25). Su una retta prendiamo procedere del tempo il setta ci indica il

GALENISTII BOLOGNESI Tutti gli Accessori per Galena

Cuffia SIA L. $14,-500$ ohm per padiglione, magnete
a forte calamita al cobalto; rinforzata e di grande forte cal.
msibilità.
DETECTOR A MARTELLETTO - L. 2,70 - Tipo brevettato con protezione, di sicuro e forte ren-

Boline a nido d'ape in smalto e ricoperte in cotone I. 2,50 (da $35-50.75$ spire)

ELEGANTISSIMA SCATOLA AERODINAMICA IN perforatura permette la confezione dei vari cir perioratura perm.
cuiti per galena.
ONDENSATORE VARIABILE A MICA - L. 4,capaeita
perdita). 500 ohm , contatto a spirale, (minima perdita)
Manopola graduata in radica adatta per la scatola
L. 1. 10 boceole nichelate L. 2,50 .

Totale L. 31

Inviare vaglia. Le spedizioni contro assegno vengono SCONTI PER FORTI QUANTITATIVI Vasto assortimento di materiale radio, valvole, cuf

Ditta BENDANDI
Via Maggiore, 8 - BOLOGNA - Tel. ${ }^{23-o 53}$
"LAVOCE DEL PADRONE, La miglior produzione per if 1937
indica una certa quantità di tempo, per
es. un 45° di secondo. La curva AC-FB ci rappresenta l'andamento della corren. te in esame. All'inizio del tempo, in A, la corrente ha valore zero. Procedendo verso destra, cioe procedendo in conformita el procedere del tempo, la cor-
rente sale in valore ed in C acquista il suo valore massimo. Il segmento CD ei indica, con la lunghezza, di quanto, dalla linea dello zero, la corrente si è è innalzata in valore, ci da cioè gli ampè.
re. Proseguendo nel tempo la corrente re. Proseguendo nel tempo la corrente
incomincia a degradare in valore ed il segmento tratteggiato HI, come si vede, è più piccolo del segmento CD. La corrente così prosegue ad avanzare, in direzione opposta a quella che aveva giungere di nuovo il valore zero, quando é trascorso il tempo rappresentato da A ad E.
Procedendo nel tempo, mentre questo rascorre per raggiungere un 45° di se$A B$, la corrente aumenta di valore fino a raggiungere in F il valore che aveva in C , ma in senso opposto: il segmento $\mathrm{CF}=\mathrm{CD}$ denota, appunto, questa egualianza
raggiunge in B il valore iniziale dello
zero. Da questo punto, procedendo nel tempo, la corrente riprende lo stesso andamento che ha avuto in tutto il trat to AB . Come si vede, nel tratto di tempo stata, in un istante qualsiasi, identica quella di un altro istante precedente: ha avuto dei valori eguali, ma di segno contrario, dato che la diversità di dire zione è appunto indicata col segno diverso.
Cosi
Cosi possiamo dire che in C la cor rente ha il massimo valore positivo menNel pre ha il massimo valore negativo. compiuto un tempo AB la corrente ha in seguito, permanendo castanti tutte le cause che la producono, non farà ch ripetere questo ciclo. Il tratto di tempo AB si chiama periodo.
La corrente alternata può, nell'unita che varia, a secondo an numero di period che varia a secondo le esigenze d'impiego
della corrente stessa. Per gli usi indudella corrente stessa. Per gli usi indu-
striali (luce, forza motrice) ad ogni se. condo la corrente può avere un numero di periodi di circa 40-50. In Italia si han no 60 periodi. Per gl'impianti destinati no 60 periodi. Per gl'impianti destinati
ad esclusivo uso di forza motrice, si h
eneralmente, un numero più piccolo
$\underset{\text { periodi. }}{\substack{\text { generalm } \\ \hline}}$

Periodo - Frequenza

Fase - Ampiezza.
Da quanto albbiamóo esposto risulta che 1) (Le correnti alternate sono co d intervalli uzuali e la cui inverte varia periodicamente da massimo na direzione ad un massimo nella diezione opposta, per ritornare di nuou valore precedente, e cosi di seguito 2) Lintervallo ai tempo durante valori positivi e negativi per cui può pas sare, e dopo il quale li riprende nello tesso ordine dicesi «periodo》.
Il numero di periodi che hanno luogo in un secondo forma quella che si chia ma la frequenza.
La frazione di periodo di una corrente l'istante che noi scegliamo, come origin dei tempi, si chiama fase.
Il massimo valore che la corrente a ternata ragsiunge, sia positivo the ne ivo,

Costantino Belluso

Il trasformatore speciale per

l S. E. 136 trovasi in ven-
dita presso

Emporium Radio

M I L A N O

VIA S. SP|IRITO N. 5
TELEFONON. 71.872

Indilirizao da seguire mel montaggio degli apparec-
chi di misusa.
Per le misurazioni puramente elettri-
che, non necessitano montaggi particolari che, non necessitano montaggi particolari
e gravosi: basta all'uopo qualche istrue gravosi : basta all'uopo qualche istru-
mento di misura normale, e, in ogni caso, un laboratorio qualunque è più che attrezzato all'uopo.
Ma per le misurazioni acustiche, oc corrono delle accortezze particolari, senza le quali le operazioni non approderebbe
ro a risultati concreti. Prima condizione ro a risultan concret laltoparlante da esaminare emetta onde sonore che non subiscano deformazioni all'uscita, dovute a riflessioni sulle superfici circostanti. Mol-
ti sistemi si possono seguire per questo ti sistemi si possono seguire per questo
scopo, ma citerò i tre più largamente imscopo, ma citeró i tre piu largamente im-
piegati, e cioé quello americano consistente nel porre l'altoparlante inclinato verso l'alto in aria libera aperta (senza soffiti), e nel proteggere il suo retro con
uno schermo che impedisca riflessioni nocive (fig. 1); quello inglese, che consiste nell' effettuare le misurazioni in riflessioni paraboliche, e quello di Maxteng che ri guarda emissioni in casse speciali, le qua

li, tappezzate di bambagia, assorbono gni incidenza, rendendo quasi nu
fenomeno della riffessione acustica Vediamo ora di dive qualche cenno gli apparecchi atti a misurazioni di que sto genere ; essi sono
Un oscillatore di bassa frequenza, in grado di emettere vibrazioni di 10-10.00 frequenze ; filtri speciali che eliminino tutte le armoniche dell'oscillatore; un attenuatore che permette la regolazione del l'emissione; un voltometro a valvola, che consenta la misurazione della ampiezza
delle vibrazioni stesse; un amplificatore delle vibrazioni stesse; un amplificator
di quest ultime; un microfono perfettamente tarato e dal diagramma di funzio namento noto, provvisto di amplificatore termoionico; un analizzatore di armon:che; e infine un oscillografo, ove si d
sideri ottenere indicazioni registrabili.

Come si effettuano le misurazioni.
a) Potenza di uscita massima esente
da distorsione. Praticamente si dice che la potenza massima indistorta di un altoparlante è quel
la più grande fra le

tutte, che non produce all orecchio dell'uditore un senso sgradevole di distor-
sione. Ma, con piû esattezza, si definisce questo fattore quale quella potenza massima che, a una data frequenza, non comporii pià dil fino a 100 periodi circa, una potenza minima di 4 Watt; oltre questa frequenza, la potenza massima indistorta si aggira quasi sempre su $1-2$ watt. Tuttavia esisto-
no altoparlanti che tra
$150-3500$ periodi no altoparlanti che tra $150-3500$ period
presentano un massimo indistorto anche di $8-9$ watt.
Per eseguire praticamente e con meto. do esatto questa misurazione, si può ricorrere con successo al procedimento in-
dicato in fig. 2. Naturalmente, tutte le misurazioni vanno effettuate seguendo criteri su esposti, in relazione all'ubicazione dell'altoparlante. sima della valvola di uscita, quest ultim nelle condizioni di funzionamento ideali Come è noto, queste sussistono quand
valcre del carico è ottimo; esso si cal.

cola con la formula $K=\frac{e^{2}}{4 R}$ \qquad

$$
\begin{aligned}
& \text { la tensione oscillante er la resistenza } \\
& \text { migliore (ugcale alla resistenza interna }
\end{aligned}
$$

di qualità già collaudata, e, naturalmen te, eccellente, e lo si usa per eseguire il "confronto». In figura 4 è riportato 10
schema di montaggio (alquanto succinto) schema di montaggio (alquanto succinto).
Si legge prima la «resa » dell'altoparlanSi legge prima la "resa " dell'altoparlan-
te-campione (sullo strumento di uscita). c poi si eseguisce la lettura di quello delI'altoparlante da studiare; si viene così a stabilire la differenza in «decineper », e conseguentemente, ad avere una idea sulla qualità dell altoparlante stesso. Tale rendimento eletro-acustico
raggiunge che valori alquanto bassi raggiunge che valori alquanto
quali si aggirano sul millesimo.
c) Fedeltà di riproduzione. - Abbiamo visto che occorre distinguere la fedeltà in ampiezza da quella in frequenza. tenendo conto delle variazioni delle ten-

$$
\begin{aligned}
& \text { migliore (uguale alla resistenza interna } \\
& \text { della valvola). Però per trovare it valore }
\end{aligned}
$$ sioni all'uscita dell' amplificatore micro-

della potenza acustica occorre ricorrere a
principi alquanto diffcoltosi; e, per trattare i quali non sarebbero sufficienti le
pagine di tutta la Rivista. Vediamo al. pagine di tutta la Rivista. Vediamo al.
loia di servirci di un altro sistema di mi surazione, che, pur essendo oggettivo, dà tuttavia risultati attendibili e appross: mati Si sceglie all'uopo un altoparlante

II altoparlante; per una data frequenza, la curva risultante è alquanto regolare e dirita, con due uncinature alle estremi-
ta, alle quali si verificano le formazioni delle armoniche
La fedeltà di riproduzione in relazione alla frequenza richiede invece attenzione maggiore, per la complessità del suo stu-

ILCEA ILCEA-ORION
 VIA LEONCAVALLO 25 - MILANO - TELEFONO 287.043

CONDENSATORI C $A \quad R \quad T \quad A$

CONDENSATORI ELETTROLITICI

PER QUALUNQUE APPLICAZIONE

CORDONCINO

DI TENSIONE POTENZIOMETRI

REOSTATI
E CC. ECC.

Aldo Aprile: LE RESISTRNZR OHMICEIR in Radiotecnica - L. 8

dio. Nécessita in questo caso misurare la variazione del flusso sonoro in un punto
stabilito, in dipendenza della frequenza, stabilito, in dipendenza della frequenza, e con una potenza di alimentazione co-
stante e conosciuta. In figura 4 è rappresentato schematicamente il 4 è rappresistema per ottenere una determinazione grafica della misurazione e in figura 5 quello per avere indicazioni oscillografche.

Per rilevare la curva (fig. 6) occorr scegliere una distanza opportuna tra l'al-
aparlante e il microfono; è consigliabile pure effettuare la misurazione in aria a perta (fig. 7), e ciò per evitare i già ac
cennati fenomeni di riflessioni acuat Praticamente si stabilisce una distanza d due metri tra l'altoparlante e il microfono, operando con una potenza di uscita di watt. Lo schermo posteriore spesso è qua eto, ed ha il lato di circa 1 metro.
a) Effetto angolare. - È chiaro come influisca enormemente sulla riproduzione parlante; tale effetto angolare dipende so prattutto dal tipo dell'altoparlante che considera, e dal suo cono; maggiore l'apertura di quest ultimo, e minore ri-
sulterà l'effetto in parola. In figura 8 ri-
porto un diagramma che dà un'idea della variazione in decibel in rapporto a va-
rie inclinazioni assegnate all'altoparlante. Dalle nozioni suesposte si nota quale importanza abbia la scelta di un altopar-

lante per ottenere una buona riproduzione; senza studiarla in ogni suo particolare, gli accorgimenti prestati per il mi-

glioramento di un apparecchio radio sono sano incompleti e spesso possono anche ritenersi superflui

Provavalvole VORAX S. O. $1 \mathrm{o3}$

 Tutte le misurazioni elettriche in continua, alimentato in alternata
VORAX S. O. 104

 Misurazioni elettriche in continua ed alternata, alimentazione in alternataRiparazione accurata di qualunque istrumento Tutti gli accessori e minuterie di nostra fabbricazione

Materiali: "Ducati, - "Lesan - "Geloson ~
"Microfarad,
Ophidia" - "Orion

SCATOLE DI MONTAGGIO per apparecchi a cristallo; per apparecchi ad una e tre valvole in altoparlante; per apparecchi ed amplificatori a 4,5 e 6 valvole "Geloso,

Il Catalogo viene inviato solo
a rivenditori autorizzati
"VORAX" S. A. - milano
VIALE PIAVE N. 14

Rassegna della Stampa Tecnica

Come fu annunziato nello scorso numero, iniziamo con questo fascicola, il servizio traduzioni daile riviste straniere.

Pubblichiamo a maggior chiarezza quanto si riferisc alle tariffe richieste per il servizio stesso

Al termine di ogni recensione segneremo con la sigla Ogni sigla sarà seguita eon la sigla Ri. il riassunto.

Ogni sigla sara seguita da un cirra che starà ad indi
il costo rlativo ad ogni traduzione o recensione

$$
\begin{aligned}
& \text { l costo rativo ad ogni traduzione o recensione. } \\
& \text { Coloro che intenderanno trofittare }
\end{aligned}
$$

Coloro che intenderanno profittare ai questo nuovo Coloro che intenderanno profitare, la a divista mette a disposizione di tutti, dovran no indirizzare le richieste alla Direzione de l'antenna - Via Malpighi 12 - Milano, unitamente all'importo, segnato co me è detto piu sopra, e specificando chiaramente il tito!o della traduzione o il riassunto desiderato.

Basterà che sul modulo siesso del versamento (sia sul nostro c. c. p. N. 3-24227 che sul vaglia postale) sieno in dicati:

Titolo, sigla, e l'indirizzo del mittente, perchè sid dato corso immediato alle richieste

Esempio:scriven
Radio Mentor.
(indirizzo) senza nessun'altra - Tr. 25 (e il pro prio indinza) senza nessunaltra indicazione sarà suff
 Co
Confidiamo che questa innovazione incontrerà a'ap provazione dei nostri lettori, anche perchè un tale servizio era vivamente desiderato da buon numero di essi.

Comunque, saremo loro grati se vorranno inviarci l loro osservazioni in merto.

LA DIREZIONE
${ }_{1937}^{\text {THE }}$
A. Serner: Un nuovo ponte per la miura diretta di impedenze. Riass. (dell'autore). - Viene descritto un ponte in cui una resistenza variab:le non inluttiva \dot{e} bilanciata dall'impedenza da misurare, cosicchè la posizione della re-
sistenza per l'azzeramento, dà il valore ohmico dell'impedenza, senza ricorrere ad alcun calcolo. E' data anche una formula con la quale si può ottenere, con altre condizioni di azzeramento, l'ango o di fase dell'impedenza.
Viene poi descritto un tipo modifica semplicemente ed in modo permanent allo scopo di eseguire misure di impedenza ad una frequenza fisssa: può e ere usato per il controllo nella fabbri cazione in serie.
date per l'uso con del ponte sono date per Yuso con sorgente ad au-
diofrequenza, con e senza corrente con tinua sovrapposta.
Tr. 20, Ri 8
H. Ow Riassunto (dell'autore): Il problema logico ed in pare ef in parte fisio-psico sono state completamente supato non difficollà costituite dalla misura del fenomeno fisico, sul quale si basava l'in tero procedimento di misura della di storsione. Viene posto in evidenza come questo metodo non si presti a vagliare la distorsione prodotta da un sistema di amplificazione. E' ${ }^{\text {quindi spiegato }}$ un
nuovo metodo: all'ingresso delli'ampli ficatore da esaminare vengono applicate contemporaneamente due tensioni sinusoidali, e viene esaminato lo spetro delle frequenze componenti luscita. S e trovato che variando l'estensione d questo spettro di frequenze varia la di-
storsione prodotta. Inoltre si è visto ch l'estensione dello spettro è proporzio nale all'ampiezza della seconda frequenza laterale, a cui corrisponde una diminuzzione di ampiezza della prima
frequenza laterale. (Le frequenze che
compongono lo spettro sono quelle che
risultano da tutte le possibili combina zioni tra le due onde introdotte e quell enerate per distorsione).
Sono dati i risultati pratici relativi ad alcune valvole e vicne posto in evidenz che le caratteristiche dinamiche dei pen odi, degli stadi in classe B ed in ge nere di tutti quelli in cui si hanno feno
meni di sa:urazione, producono forti d storsioni. I difetii del vecchio metod d_{i} misura vengono mostrati con un e sempio su di un tipico pentodo
I risultati delle nuove misure vengona messi in relazione con prove di ascolto, missibili della distorsione fisica, ai qual corrispondono i valori della distorsione udibile variante da «alta fedeltà » a «di storsione inaccettabile». E^{\prime} inclusa un bibliografia.
La mosira Teilla Società
uovi e perzionati strumenti per radi ricerche.
HE WIRELESS WORLD - 5 Febbraio 1937.
P. G. A H. Voigt. Collaborando con l'architetto: Alcuni problemi incontrati durante l'installazione di un sistema d amplificazione.
Corrispondenza da New York: Pa pubblico americano. in grande scala. cazioni: rassegna degli apparecchi cor
renti. enti.
L'acustica dei teatri,: esplorazione
della distribuzione del suono per mezzo di un modello ottico. Il lavoro dell'ing, custico sarebbe assai semplificaio osse possibile rivelare ad occhio le v lazioni di pressione dell aria. Attua Giuangengdo; nel frattempo si stann volgendo metodi indiretti per la solu zione del problema. La tecnica ottica sata nei Laboratori Philips, e descritt
qnesto articolo, è di grande attu ${ }^{\text {in }}$ quà.
Tr. $10, \mathrm{Ri}{ }^{7}{ }^{7}$
Altoparlante per grandi potenze: Ras pegificazione.
A. Hunter La voce della legge.

Microfono non direzionale. Questo articolo descrive i progressi attuati su un microfono non direzionale, dei Lab Bell, Questo microfono dà una rispost ostante fino a $10.000 \mathrm{p} / \mathrm{sec}$, indipende dall'angolo di incidenza. mobile, a nastro e a cristallo. Le calvole negli equipaggiamenti p

WIRELESS WORL日, 9 Febbraio 1937 F. II. Reyner. Deviax one magre ic.a. Sebbene il sistema di deviazione elet
rostatico del raggio, in un tubo a ragg catodici, è meglio conosciuto, l'altro sitema, della deviazione magnetica, è ora così largamente usato, specialmente in elevisione, che la sua conoscenza e fat re essenziale per la conoscenza dell pratica moderna

$$
\text { Tr. } 15, \text { Ri. } 10
$$

Sistemi ATC (Centrollo automatico di natica di sintonia.
Allo scopo di evilare la possibilità na accordo impertetlo sono stati esco itati dei metodi per rendere il ricevi Con tali sistomi il primo accordo vi e ottenuto a nano col solito sistema ma poi un dispositivo eletrico entra in unzione quando laccordo non è ancora perfettamente raggiunto. Il controllo au omatico di sintonia è in generale adato ore: esso quindi funziona non solo per correggere un accordo imperfetto ma an he per correggere le variazioni della requenza generata
Tr. 15, Ri. 10
W. T. Cocking. Il ricevitore di tule uenza intermedia o a video-frequenza In questo articolo viene esaminato il mo do con cui si può ottenere l'amplifica zione. Viene trattato con qualche deta glio il problema riguardante i circuiti a apereterodina e ad amplificazione retta, e lampiificazion
e dopo la rivelazione.

$$
\begin{gathered}
\text { Tr. } \\
\text { ioggie. Linee } d{ }^{12,}
\end{gathered}
$$

M. G. Scioggie. Linee di trasmissione adio News - Marzo 1937 I progressi della televisione in Ita ia. WFrzel, Bohlen, Taylor, Cockaday. 1 Quartet $>$ per la ricezione dcllia gamn - 10 metri.
er onde ultra corte.
ver onde ulira corte.
Parte III. Il prim
serie (Gennaio 1937) articolo di questa enerale riguardante le eaplicatratazione uperreazione nella ricezione delle dell Itra corte. Il secondo articolo (Febhraio 937) fornisce i dettagli costruttivi comleti per un ricevitore a c. a. che mette in pratica i principi esposti nel numero rrecedente. L'articolo di questo numero

LE SCATOLE DI MONTAGGIO

a migllor prezzo e più moderne sono fornite da
LABORATORIO RADIOELETTRICO DUILIO NATALI
Via Firenze N. 57-ROMA - Telefono 484419

COSTRUZIONI - RIPARAZIONI - MESSEA PUNTO

Confidenze al radiofilo

Avvertiamo i nostri lettori che per "
vere consigli e norme su apparecchi ${ }^{\text {a }}$ vere consigli e norme su apparecchi d
nostra ideazione, necessita indicare il nostra ideazione, neecessita indicare
numero della rivista e l'anno di pub. blicazione, evitandoci così un improbo
lavoro di ricerca e un conseguente per. lavoro di
ditempo.

Abbiano ricevuto un manoseritto, da Imperia, con in calce la sigla G. B.
Ci rincresce comunicare che il detto articolo 'on possiamo pubblicarlo per-
hè non adatto all'indole e agli scopi che non adatto all'indole e agli scopi
della nostra Rivista. Bisogna che tuti ricordino che oocorre solo della tecnica
anzi della buona tecnica) perchè si anzi della buona tecnica) perchè si
sossa interessare il maggior numero di
di
 emplice, dimostrativa, tanto più è ben Ringraziamo comunque del pensiero Troviamo opportuno aggiungere ch reso in esame e quindi pubblical preso in esame, e quindi pubblicato
alcuale che non porti ben chia \%
Come, Cognome e domicilio del mit
*
3765-Cn. - Pasinati Umberro - Incis. -
trasformatori del genere da Lei indicato non sono praticamente usati perch li avvolgimenti secondari debbono ave n numero di spire de condato pio e praticamente più che doppio di quello che hanno quando sono avvolti scapito del rendimento e del prezzo del rasformatore
II calcolo, tranne questa variangte,
identico a quello degli altri trasform ori.
Sulla nostra rivista sono apparsi di
versi articoli
versi articoli che descrivono ampi mali (per es. pag. 355 anno 1935, N. 8)

3766-Cn. . Abb. 7091 - Chisolfi Qur
Cremona.
Verifichi bene che nori si tratti della Fada N 351 A (po tendo la lettera A mal scritta leggers per il numero 4). Questo apparecchio numrate, impiega le stesse valvole co o stesso, sistema, solo non impiega la 6F7 ma la 6 B7. Verifichi che anche in cio non si tratti di un errore di lettura
Potremo fornirle lo schema suddett dietro sua regolare richiesta. I dati del Suo ricevitore a 3 valvole saranno sem pre ben accett

3767-Cn. - Mronto U60. Padova.
Probabilmente il trasf. di MF è il 67 Probabilmente il trasf. di MF è il 671 e non il 651 . Se Ena si potesse fornire
di una 2B7 le potremmo mandare uno
schema di ricevitore super eterodina di ottima riuscita, perfettamente adattabil
Questa rubrica è a dispo-
$\begin{aligned} & \text { sizione di tutti il lettori, pur } \\ & \text { chè le loro domande, brevi e }\end{aligned}$
$\begin{aligned} & \text { chiare, riguardino apparecchi } \\ & \text { da noi descritti. Ogni richies- }\end{aligned}$
$\begin{aligned} & \text { da noi descritti. Ogni richies- } \\ & \text { ta deve essere accompagnata }\end{aligned}$
$\begin{aligned} & \text { ta deve essere accompagnata } \\ & \text { da tre lire in francobolli. De- }\end{aligned}$
$\begin{aligned} & \text { siderando. sollecita risposta } \\ & \text { per lettera, inviare lire 7,50. }\end{aligned}$
per lettera, inviare lire 7,50.
$\begin{aligned} & \text { Agli abbonati si risponde } \\ & \text { gratuitamente su questa ru- }\end{aligned}$
$\begin{aligned} & \text { brica. Per le risposte a mez- } \\ & \text { zo lettera, essi debbono uni- }\end{aligned}$
formarsi alla tariffa speciale
$\begin{aligned} & \text { per abinge. } \\ & \text { cing }\end{aligned}$
Desiderando schemi spe-
$\begin{aligned} & \text { ciali, overo consigli riguar- } \\ & \text { danti apparecchi descritti da }\end{aligned}$
altre Riviste, L. 20; per gli
$175 \mathrm{Kc}(671 \mathrm{e}$ 672). Se Ella deciderà in tale senso ci faccia un.
sta di schema speciale.
*
3768-Cin. - Abbonato 6091 - Torino. La potenza d'uscita (volume sonoro) è
anche in gran parte dipendente dall'alto parlante impiegato e dal grado di ma gnetizzazione del nucleo di questo.
La WE 38 può dare effetivamente potenza di 4.5 W d'uscita, ma a a tale po
tenza la ricezione mon è esente da ditenza la ricerione
storsioni (8.10%).
Quanto a potenza d'uscita la la SE132
bis è preferibile. Il trasformater bis e preferibile. 1t trasformatore di ali
mentazione di cui ci fornisce i dati un po insufficiente, particolarmente se Ella vuole ottenere l'uscita massima
della WE 38. Se invece si accontenta di della WE 38 . Se invece si accontenta d
una uscita più modesta potrà impiegarlo nha uscita piu modesta potra impiegarlo
henssimo per il ricevitore suddetto. Per ootenere l'rimpedenza di $1,5 \mathrm{H}$
ohm potrà usufruire di un ohm potrà usufruire di un nucleo d
$20 \mathrm{~m} / \mathrm{mq}$. di sezione avvolgendo 2800 spire di filo smallato da $0,25 \mathrm{~m} / \mathrm{m}$.
*

CONDENSATORI

VARIABILI AD ARIA
L. 5 CADAUNO

VENDITE-CAMB
RIPARAZIONI

UFFICIO-RADIO

Via Bertola, 23 ble - TORINO - Tol. 45.426
rsistenza di placca dovrà essere di 100 La potenza massima d'uscita otten ile in radio (ed in grammofono) \grave{e} Ella non ci dice il diametro del tub dell'oscillatore non siamo quindi in gra di precisarle il numero di spire Aggiunga un condensatore di 50 uu Aggiunga un condensatore di 50 uu
paralleleo a quello di 300 , ciò che gio

*

3770 Cn. - Abbonato 7022 - Firenze. ila puo sostituire senza alcun timo ento per ci-oे che riguarda sensibil a. Andrà però modificata la resistenz i catodo che deve essere di 200 ohn L'oscillatore e i trasformatori di AF sono ugualmente adati.
Montando la AL4 subi
i. Montando la AL4 subito dopo la 6H6
non avrebbe la potenza d'uscita massima non avrebbe la potenzaa duscita massima
che tale valvola può dare, particolarmente per quello che riguarda la ripro duzione grammofonica. Non sarà quin
di male che la AL4 sia messa al posto

Vedremo de de accontentaria per $1 /$
de chema della Atw Grazie delle gentili ed incoraggianti testimonianze.
La controreazione nuoce notevolmente alla potenza di uscita e si adat
cialmente al circuito controfase.

3771-Cn. - Ing. Franco Molin - Por denone.- Saremmo lieti di averLa gia in dora accontentata, ma non ei è sta sanmdo attivanente alla ricerca di que numeri di Radio Craft. Le saremo ogngi caso precisi per lethera. La ringra
iamo della osservazione relativa al l'errore di disegno che abbiamo però gì eettificato nel numero scorso della rista. Non possiamo indicarLe il miqli
altoparlante per le note acute, tutrav itoparlante per le note acute, ustaviz
nei nostri ricevitori abbiamo usato co mor. risultato il Yensen K6.
*
3772 Cn. A. Vianello - Abb. 7165 Venezia. - Ella può benissimo far
unzionare il BV517 sulle onde lunghe sulle corte.
Per la gama delle onde lunghe Per la gama delle onde lunghe usi
un trasformatore di AF d'aereo rispon. lente ai seguenti dati: Avvolgimento su lubo di bakelite (o
legno paraffinato) $\mathrm{di} \mathrm{m} / \mathrm{m} \quad 13 \mathrm{di}$ dia-
Primario di aereo spire 110 filo $1,5 / 10$ operto seta in avvolyimento nid ape dello spessore di $5 \mathrm{~m} / \mathrm{m}$.
Secondario spire 390 filo dello stesso diametro in avvolgimento a nido d'ape
dello stesso spessore del prrecedente. L.e
due bo
obinette debbono distanziare d
 (sintonia e reazione) avrà un primario
di 60 spire dello stesso filo in avvolgi. mento a nido d'ape dello stresso spes. sore; il secondario di sintonia di 415
spire dello stesso filo avyolto allo pire dello stesso filo avvolto allo stesso
modo ed una bobinetta di reazione di 85 spire. Il primario disterà $\mathrm{di} 10 \mathrm{~m} / \mathrm{m}$ dal seconderio e la reaziones 5 millimetri da qguest ultimo. La gamma che si co-
pre in tal modo va da 800 a 2000 m . Per le O.C. il primo trasformatore di AF a abolito, si utilizza come primario di Detto primario si comporrà di 5 spire
Date filo di $2 / 10$ seta avvolte fra le spire del connesso a massa. II secondario si comporrà di 12 spire filo $8 / 10$ smaltato. spaziate di $1,8 \mathrm{~m} / \mathrm{m}$. La, Lavolgimento di maltato affrancate avvolte nello stesso senso ed in continuazione al secondario
dove questo si connette alla massa. La amma d'onde che così si copress. va ${ }^{20}$ ai 70 m . circa.
. e perciò attendo ogni nuova u. scita de "l'antenna" dalla quale
ho tratio, da circa tre anni, sem pre nuove cognizioni e continuo a trarne ad ogni nuovo numero, nohostante it fatto che, soltanto attraverso la Rivista stessa, ho ragmi elettrici e radio elettrici che non mi sognavo neppure!
...è principalmente per questo che sono tanto affezionato a "l'anten nan la quale e effettivamente comchiara tanto da essere assimilata anche di chi si trovi per la prima volta dinanzi alle meraviglie delia elettricità.
Abbonato 4013 - Salęrno.
Prima di passare alla risposta, abbia. mo voluto riportare qui sopra qualcuna
delle frasi della sua lettera, e ciò non per puro spirito di soddisfazione, quanor perche sintetizza quanto ci giunge da diverse parti in argomento. La ringra-
ziamo, e cogliamo volentieri l'occasione per assicurarla, ed assieme a Lei tutti i nostri amici, che mai lascereme niente di intentato pur di progredire sempre sulla via che ci siamo tracciata, e che miglioramenti evidenti e continuativi non sono per noi che delle semplici tap.
pe sul cammino avvenire. e sul cammino avvenire
$1^{\circ} \mathrm{E}^{\prime}$ un'idea che non mancheremo di tenere in considerazione: tanto più che che una buona cartella che racchiudesse utta l'annata della rivista sarebbe bene ceetta a tutti i nostri lettori.
${ }^{20}$ L'argomento "Strumenti di misura "non ha mai cessato di far parte dei nostri programmi: Lo abbiamo trattato,
vrà nel più breve tempo possibile, una tartazione molto più ampia e rispon-
deetm all'effettivo interesse che ha sen pre avuto
3° In quanto alle «Riviste Straniere», crediamo superflua una risposta partico lare. Veda il N. 4 scorso, il presente
quelli che seguiranno e si troverà quelli che seguiranno e si trovera quan-
to forma oggetto del suo desiderio.

NOTITHME VA MIT La Crosley Americana ha pasto in ven.
dita un lussuoso apparecchio ricevente di
eccezionali caratteristiche. Impiega il be eccezionali caratteristiche. Impiega il be
nunnero di
37 valvole che sono montat nei quatrro chassis sui quali è costruito l'intero apparecchio. Fornisce una po.
tenza di uscita di tenza di uscita di 75 watt che serve ad
alimentare 6 altoparlanti. La fede tà eleir trica dell'apparecchio è molto elevata: la risposta è costante sulla gamma vastissi ma di frequenza che va da 20 a 20.000 per sec. l'apparecchio viene presentat
in un mobile che misura in altezza quan to una persona di media statura.

La R.A.C. (Radiotron) ha costruito posto in vendita, in America, un nuov sioni ridottissime: R.C.A. 913. Questo tubo ha una grande importanza per gil amatori e per i riparatori. E' montato nel.
l'interno di un bulbo metallico cilindrico l'interno di un bulbo metallico cilindrico
(identico a quello delle valvole metaliche) di circa 12 cm . di lunghezza: la parte superiore è costituita dallo schermo fluo
rescente del diametro di circa $2,5 \mathrm{~cm}$ rescente del diametro di circa $2,5 \mathrm{~cm}$. Gli
elettrodi fanno capo agli 8 piedini di uno zoccolo normale. Funziona con la tensione massima di 500 volt, e dà delle buone
immagini anche con 250 volt. La deviaimmagini anche con 250 volt. La devia-
zione nei due sensi del raggio catodico è zotenuta con sistema elettrostatico. Dato il suo basso prezzo, le dimensioni limi-
tate, e la bassa potenza necessaria per tate, e la bassa potenza necessaria per
l'alimentazione, il tubo 913 si presta mo! tissimo per equipagg:amenti portatili, ed offre a chiunque la possibilità di lavorare con l'oscillografo a raggi catodici.
$\underset{\text { N. }}{\text { N. }}$ d. R - Prossimamente sarà de. scritto l'equipaggiamento conpleto per le
misure con il tubo a raggi catodici e par. misure con turmente per l'allineamento dei
cola
cevitori a mezzo del tubo stesso. cevitori a mezzo del tubo stesso.
*
A Berlino, si tiene attualmente it
Congresso de l'Union Internationale Radiodiffusion.
I lavori furono iniziati il 5 di questo mese e proseguiranno fir.o al 14 correnzioni con 50 congressisti che rappresen. tano i più importanti Enti di trasmis sioni radiofoniche.
La presidenza del Congresso è comLa presidenza del Congresso è eom-
posta dagli inviati di cinque stati: Italia posta dagii inviati di cinque stati: Italia,
Germania, Svizzera, Inghilterra e e Svezia L'Italia è rappresentata da S. E. Val. lauri.

La radio nei battelli da pesca I pescatori di Terranova, prima di partire per la loro lunga stagione di lavoro,
$(8$ mesi circa), hanno pensato di munire loro battelli di un apparecchio radio ri cevente per rimanere in continuo con
tatto col resto del mondo, ed in partico lare con le loro famiglie che dalla terra ferma potranno inviare ai cari assenti tut e le notizie che possono interessari tente che li informerà anche di tutte quelle notizie orarie e meteorologiche, che gii sono necessarie, si vede subito
1'enorme importanza anche pratica di l'enorme import.
tale innovazione.
 ELENCO INSERZIONISTI LESA ${ }^{\text {a }}$ pag. di copertina C. e E. Bezzi Radio.
Terzago

Berardi | Terzago |
| :--- |
| Berardi |
| O. S. | O. S. T

LESA.
S. L. T. A.
 Unda
S. S.
Micro S. I. P. P. I.
Radio Ard Radio Savi
Bendandi Emporium radio Inpo.Orion
Incax
Ver Vorax
Natali
Ufficio
Ufficio radi,

1 manoscritti non si restituiscono. Tutti i dirittil di proprietà artistica letteraria sono riservati alla So letà Anonima Editrice "Il Rostro | La responsabilità e tecnico $\begin{array}{c}\text { scientifica } \\ \text { dei lavori firmati, pubblicati } \\ \text { nella } \\ \text { ri. }\end{array}$ |
| :---: | vista, spetta ai rispettivi autori.

 $\overline{\text { Graf. ALBA }} \underset{\substack{\text { Via } \\ \text { Milano }}}{\text { P. da Cannobio, } 24}$

Piccoli Annunzi
L. 0,50 alla parola; minimo $10 \mathrm{pa}-$ ole per comunicazione di carattere privo. Per gll prezzo unitario per commerciale, il 1 «piccoli ann
«agati anticicipatamente ante all'Amministraione de l' l^{\prime} 《Antenna ».
Gli abbuati hamno diritto Glicaziobonati humno diritto alla pub
blicazione gratuita di 12 parole all T'anno.

VENDO dischi occasionissima lire 4, VENDO dischi occasionissima lire 4,
Tagliarini - Via Visconti D'Aragona, 22.
Milano.

ehe si stacea dai similari per le sue dof di sensibilita, selettivita, qualita di voce Sulle onde corte e corfissime si può ascol-
tare le sfazioni più lontane: Euba, Sehenee tady, Pittsburg si possono ricevere tutti i giopni.
Ga seatola di montaggio Nova 500 può essere acquistata presso tutfi i migliori rivendilori; possono anche essepe aequi state sciole le park essediali: cioe il 1 monobloeco A. pù essere aequistafo già montafo e farafo. Ga marca Nova eostifuisee una garanzia a Nowa garantisee il buon funzio delle sue scatole di monfaggio e relative parti.
Eseguisee la fapafura e la messa a punto gratuita delle scafole di montaggio. Fo.nisee una consulenza grafuifa. Una completa organizzazione a disposizione dei dileftanti e dei professionisti.

QUGGEHE PREZZO

Scatola di montaggio Nova 500, completa di monoblocco
Nova 130 e di altoparante eletrodinamico mod. 7 .

 Monoblocco A.F. Nova 500 mod. 130 T, come sopra, ma
tarato e meso a
nare, senza valvolata sulla sala L. 298.00

 Telaioo verniciato, stampato in lamiera acciaio $10 / 10$ -
mod. 62 $\mathbf{3 0 . 0 0}$ Trasformatore di alimentazione mod. 14.2 . . L. 68.00 . 0,25 ㅎ 0,5 mod. $127 . \because . \quad . \quad . \quad$. L. $\quad 15,60$ $\begin{array}{cc}\text {. L. } & \mathbf{1 , 8 0} \\ \text { L. } & \mathbf{8 , 8 0}\end{array}$

IL TRASFORMATORE DI ALIMENTAZIONE

NOVA = M\|LANO = Via Alleanza, 7 - Tel. 97039
a MILANO - presso E. LORENZETTI - Via V. Monti, 51 - Tel. 44658
a R O M A - presso Rag. M. BERARDI - Via Flaminia, 19 - Tel. 31994

O F F I C I N E E L E T T R O M M E C C A N I C H E

Sezione industriale

Motori asincroni trifasi e monofasi - Generatori di corrente continua - Convertitori per archi cinematografici - per carica batterie accumulatori - per piani, mandrini, tamburi magnetici - Trasformatori - Pulitrici - Separatori elestro-magnetici a tamburo rotante - Elettroventilatori centrifughi a bassa, media ed alta pressione - Elettropompe centrifughe.

Sezione clettrica

Trasformatori ec Autotrasformatori monofasi e trifasi - Trasformatori per suonerie. Trasformatori ad alto rendimento per alimentazione di lampade a bassa tensione - Suoneri normali Suonerie antipatasslarie - Reostati a Cursore - Tyasformatori per impianti al Nèon - Avvisatori d'incendio . Riduttori di corrente.

COMPLESSO MOTORE. E
RIVELATORE FONOORAFICO

Sezione Radio

Motori per radiofonografi - Complessi radiofonografici - Autotrasformatori d'alimentazione Induttanze per radio - Trasformatori per elettroacustica - Trasformatori per amplificatori a bassa frequeaza di alta qualità.

[^0]: Agenzia esclusiva: Compagnia Generale Radiofonica Soc. An. Piazza Bertarelli N. 4 Milano

